python实现百度OCR图片识别过程解析

这篇文章主要介绍了python实现百度OCR图片识别过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

代码如下

import base64
import requests

class CodeDemo:
  def __init__(self,AK,SK,code_url,img_path):
    self.AK=AK
    self.SK=SK
    self.code_url=code_url
    self.img_path=img_path
    self.access_token=self.get_access_token()

  def get_access_token(self):
    token_host = 'https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id={ak}&client_secret={sk}'.format(ak=self.AK,sk=self.SK)
    header={'Content-Type': 'application/json; charset=UTF-8'}
    response=requests.post(url=token_host,headers=header)
    content = response.json()
    access_token=content.get("access_token")
    return access_token

  def getCode(self):
    header = {
      "Content-Type": "application/x-www-form-urlencoded"
    }
    def read_img():
      with open(self.img_path, "rb")as f:
        return base64.b64encode(f.read()).decode()

    image = read_img()
    response=requests.post(url=self.code_url,data={"image":image,"access_token":self.access_token},headers=header)
    return response.json()

if __name__ == '__main__':
  AK = "" # 官网获取的AK
  SK = "" # 官网获取的SK
  code_url = "https://aip.baidubce.com/rest/2.0/ocr/v1/accurate" # 百度图片识别接口地址
  img_path=r"" # 识别图片的地址

  code_obj=CodeDemo(AK=AK,SK=SK,code_url=code_url,img_path=img_path)
  res=code_obj.getCode()
  code=res.get("words_result")[0].get("words")
  print(res)
  print(code)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python图像处理之图片文字识别功能(OCR)

    OCR与Tesseract介绍 将图片翻译成文字一般被称为光学文字识别(Optical Character Recognition,OCR).可以实现OCR 的底层库并不多,目前很多库都是使用共同的几个底层OCR 库,或者是在上面进行定制. Tesseract 是一个OCR 库,目前由Google 赞助(Google 也是一家以OCR 和机器学习技术闻名于世的公司).Tesseract 是目前公认最优秀.最精确的开源OCR 系统. 除 了极高的精确度,Tesseract 也具有很高的灵活性.它可

  • Python实现字符型图片验证码识别完整过程详解

    1摘要 验证码是目前互联网上非常常见也是非常重要的一个事物,充当着很多系统的防火墙功能,但是随时OCR技术的发展,验证码暴露出来的安全问题也越来越严峻.本文介绍了一套字符验证码识别的完整流程,对于验证码安全和OCR识别技术都有一定的借鉴意义. 本文的基于传统的机器学习SVM的源码共享:https://github.com/zhengwh/captcha-svm 2关键词 关键词:安全,字符图片,验证码识别,OCR,Python,SVM,PIL 3免责声明 本文研究所用素材来自于某旧Web框架的网

  • Python实现识别图片内容的方法分析

    本文实例讲述了Python实现识别图片内容的方法.分享给大家供大家参考,具体如下: python识别图片内容. 这里我的环境为windows64位,python2.7.14 需要用到PIL模块和tesseract模块. 首先需要安装pip包管理,安装方法可参考附录windows下安装python包管理器pip 安装PIL模块: pip install Pillow tesseract模块安装: pip install pytesseract 安装识别引擎和中文语言包,点击此处本站下载. 下载完成

  • python批量识别图片指定区域文字内容

    Python批量识别图片指定区域文字内容,供大家参考,具体内容如下 简介 对于一张图片,需求识别指定区域的内容 1.截取原始图上的指定图片当做模板 2.根据模板相似度去再原始图片上识别准确坐标 3.根据坐标剪切出指定位置图片,也就是所需的内容区域 4.对指定位置图片进行ocr识别 环境 Ubuntu18.04 Python2.7 所需Python模块 1.aircv 用于识别模板再原始图的位置坐标 pip install aircv 2.Pillow 用于剪裁图片 pip install Pil

  • 详解利用python+opencv识别图片中的圆形(霍夫变换)

    在图片中识别足球 先补充下霍夫圆变换的几个参数知识: dp,用来检测圆心的累加器图像的分辨率于输入图像之比的倒数,且此参数允许创建一个比输入图像分辨率低的累加器.上述文字不好理解的话,来看例子吧.例如,如果dp= 1时,累加器和输入图像具有相同的分辨率.如果dp=2,累加器便有输入图像一半那么大的宽度和高度. minDist,为霍夫变换检测到的圆的圆心之间的最小距离,即让我们的算法能明显区分的两个不同圆之间的最小距离.这个参数如果太小的话,多个相邻的圆可能被错误地检测成了一个重合的圆.反之,这个

  • python3+opencv3识别图片中的物体并截取的方法

    如下所示: 运行环境:python3.6.4 opencv3.4.0 # -*- coding:utf-8 -*- """ Note: 使用Python和OpenCV检测图像中的物体并将物体裁剪下来 """ import cv2 import numpy as np # step1:加载图片,转成灰度图 image = cv2.imread("353.jpg") gray = cv2.cvtColor(image, cv2.C

  • 如何使用Python进行OCR识别图片中的文字

    朋友需要一个工具,将图片中的文字提取出来.我帮他在网上找了一些OCR的应用,都不好用.所以准备自己研究,写一个Web APP供他使用. OCR1,全称Optical character recognition,或者optical character reader,中文译名叫做光学文字识别.它是把图像文件中的手写文本,打印文本转换为机器编码文本的一种方法. OCR技术广泛用于识别打印纸张中的文字数据 -- 比如护照,支票,银行声明,收据,统计表单,邮件等.OCR的早期版本,需要对图片中的每个文字都

  • python验证码识别教程之利用投影法、连通域法分割图片

    前言 今天这篇文章主要记录一下如何切分验证码,用到的主要库就是Pillow和Linux下的图像处理工具GIMP.首先假设一个固定位置和宽度.无粘连.无干扰的例子学习一下如何使用Pillow来切割图片. 使用GIMP打开图片后,按 加号 放大图片,然后点击View->Show Grid来显示网格线: 其中,每个正方形边长为10像素,所以数字1切割坐标为左20.上20.右40.下70.以此类推可以知道剩下3个数字的切割位置. 代码如下: from PIL import Image p = Image

  • Python3调用百度AI识别图片中的文字功能示例【测试可用】

    本文实例讲述了Python3调用百度AI识别图片中的文字功能.分享给大家供大家参考,具体如下: 首先pip install命令安装baidu-aip模块,如下图所示(这里使用pip3 install baidu-aip命令): 编辑Python代码时注意,需要首先引入AipOcr和re两个模块,即: from aip import AipOcr import re 示例代码如下: from aip import AipOcr import re APP_ID='***' API_KEY='***

  • python验证码识别教程之利用滴水算法分割图片

    滴水算法概述 滴水算法是一种用于分割手写粘连字符的算法,与以往的直线式地分割不同 ,它模拟水滴的滚动,通过水滴的滚动路径来分割字符,可以解决直线切割造成的过分分割问题. 引言 之前提过对于有粘连的字符可以使用滴水算法来解决分割,但智商捉急的我实在是领悟不了这个算法的精髓,幸好有小伙伴已经实现相关代码. 我对上面的代码进行了一些小修改,同时升级为python3的代码. 还是以这张图片为例: 在以前的我们已经知道这种简单的粘连可以通过控制阈值来实现分割,这里我们使用滴水算法. 首先使用之前文章中介绍

随机推荐