Java 二分法检索算法代码实现详解

一,二分法检索算法介绍

二分法检索(binary search)又称折半检索,二分法检索的基本思想是设字典中的元素从小到大有序地存放在数组(array)中。是最常用的搜索算法之一,这主要是由于其搜索时间短。

二,二分法检索算法思路

这种搜索使用分而治之方法,并且需要事先对数据集进行排序。

它将输入集合分为相等的两半,并且每次迭代都将目标元素与中间元素进行比较。

如果找到该元素,则搜索结束。否则,我们根据目标元素是小于还是大于中间元素,通过划分并选择适当的数组分区来继续寻找元素。

这就是为什么对Binary Search有一个排序的集合很重要的原因。

当firstIndex(我们的指针)经过lastIndex(最后一个元素)时,搜索将终止,这意味着我们已经搜索了整个数组,并且该元素不存在。

有两种方法可以实现此算法- 迭代和递归。

这里不应该是关于时间和空间这两个实现之间复杂的差异,虽然这不成立于所有语言。

三,二分法检索算法代码实现

迭代式

首先让我们看一下迭代方法:

public class SearchAlgorithms {
 /**
  *迭代方法
  * @param arr
  * @param elementToSearch
  * @return
  */
 public static int binarySearch(int arr[], int elementToSearch) {

  int firstIndex = 0;
  int lastIndex = arr.length - 1;

  // 终止条件(元素不存在)
  while(firstIndex <= lastIndex) {
   int middleIndex = (firstIndex + lastIndex) / 2;
   // 如果中间元素是我们的目标元素,那么返回它的索引
   if (arr[middleIndex] == elementToSearch) {
    return middleIndex;
   }

   // 如果中间的元素比较小
   // 将我们的指数指向中间+1,不考虑前半部分
   else if (arr[middleIndex] < elementToSearch)
    firstIndex = middleIndex + 1;

    // 如果中间的元素更大
    // 将我们的指数指向中间1,不考虑下半部分
   else if (arr[middleIndex] > elementToSearch)
    lastIndex = middleIndex - 1;

  }
  return -1;
 }
 /**
  * 用于打印结果
  * @param targetParameter
  * @param index
  */
 public static void print(int targetParameter, int index) {
  if (index == -1){
   System.out.println(targetParameter + " 未找到");
  }
  else {
   System.out.println(targetParameter + " 搜索结果为: " + index);
  }
 }
 //测试一下
 public static void main(String[] args) {
  int index = binarySearch(new int[]{89, 57, 91, 47, 95, 3, 27, 22, 67, 99}, 67);
  print(67, index);
 }
}

输出:

递归的

现在让我们看一下递归实现:

递归方法的区别在于,一旦获得新分区,我们便会调用方法本身。在迭代方法中,每当确定新分区时,我们都会修改第一个和最后一个元素,并在同一循环中重复该过程。

这里的另一个区别是递归调用被推入方法调用堆栈,并且每个递归调用占用一个空间单位。

我们可以像这样使用这种算法:

public class SearchAlgorithms {

 /**
  *递归方法
  * @param arr
  * @param elementToSearch
  * @return
  */
 public static int recursiveBinarySearch(int arr[], int firstElement, int lastElement, int elementToSearch) {

  // 结束条件
  if (lastElement >= firstElement) {
   int mid = firstElement + (lastElement - firstElement) / 2;

   // 如果中间元素是我们的目标元素,那么返回它的索引
   if (arr[mid] == elementToSearch)
    return mid;

   // 如果中间元素大于目标元素
   if (arr[mid] > elementToSearch)
    return recursiveBinarySearch(arr, firstElement, mid - 1, elementToSearch);

   return recursiveBinarySearch(arr, mid + 1, lastElement, elementToSearch);
  }

  return -1;
 }
 /**
  * 用于打印结果
  * @param targetParameter
  * @param index
  */
 public static void print(int targetParameter, int index) {
  if (index == -1){
   System.out.println(targetParameter + " 未找到");
  }
  else {
   System.out.println(targetParameter + " 搜索结果为: " + index);
  }
 }
 //测试一下
 public static void main(String[] args) {
  int index = recursiveBinarySearch(new int[]{3, 22, 27, 47, 57, 67, 89, 91, 95, 99}, 0, 10, 67);
  print(67, index);
 }
}

输出:

四,以算法时间复杂度和空间复杂度总结算法。 

时间复杂度

由于二进制搜索每次将其时间复杂度为O(log(N))时都会将数组分为两半。此时间复杂度是线性搜索O(N)时间复杂度的显着改进。

空间复杂度

此搜索仅需要一个空间单位即可存储要搜索的元素。因此,其空间复杂度为O(1)。

如果二分法检索是递归实现的,则需要将对该方法的调用存储在堆栈中。在最坏的情况下,这可能需要O(log(N))空间。

它是大多数用于搜索的库中最常用的搜索算法,二分法检索树也被许多存储排序数据的数据结构所使用。

该Arrays.binarySearch方法中的Java API也实现了二进制搜索哦。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • java 二分法算法的实例

    java 二分法算法的实例 1.前提:二分查找的前提是需要查找的数组必须是已排序的,我们这里的实现默认为升序 2.原理:将数组分为三部分,依次是中值(所谓的中值就是数组中间位置的那个值)前,中值,中值后:将要查找的值和数组的中值进行比较,若小于中值则在中值前面找,若大于中值则在中值后面找,等于中值时直接返回.然后依次是一个递归过程,将前半部分或者后半部分继续分解为三部分.可能描述得不是很清楚,若是不理解可以去网上找.从描述上就可以看出这个算法适合用递归来实现,可以用递归的都可以用循环来实现.所以

  • Java 二分法检索算法代码实现详解

    一,二分法检索算法介绍 二分法检索(binary search)又称折半检索,二分法检索的基本思想是设字典中的元素从小到大有序地存放在数组(array)中.是最常用的搜索算法之一,这主要是由于其搜索时间短. 二,二分法检索算法思路 这种搜索使用分而治之方法,并且需要事先对数据集进行排序. 它将输入集合分为相等的两半,并且每次迭代都将目标元素与中间元素进行比较. 如果找到该元素,则搜索结束.否则,我们根据目标元素是小于还是大于中间元素,通过划分并选择适当的数组分区来继续寻找元素. 这就是为什么对B

  • JAVA类变量及类方法代码实例详解

    这篇文章主要介绍了JAVA类变量及类方法代码实例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 类变量(static) 类变量是该类的所有对象共享的变量,任何一个该类的对象去访问它时,取到的都是相同的值,同样任何一个该类的对象去修改它时,修改的也是同一个变量. public class C { public static void main(String[] args){ Child ch1 = new Child(12,"小小"

  • Java数据结构与算法入门实例详解

    第一部分:Java数据结构 要理解Java数据结构,必须能清楚何为数据结构? 数据结构: Data_Structure,它是储存数据的一种结构体,在此结构中储存一些数据,而这些数据之间有一定的关系. 而各数据元素之间的相互关系,又包括三个组成成分,数据的逻辑结构,数据的存储结构和数据运算结构. 而一个数据结构的设计过程分成抽象层.数据结构层和实现层. 数据结构在Java的语言体系中按逻辑结构可以分为两大类:线性数据结构和非线性数据结构. 一.Java数据结构之:线性数据结构 线性数据结构:常见的

  • java数据结构排序算法之归并排序详解

    本文实例讲述了java数据结构排序算法之归并排序.分享给大家供大家参考,具体如下: 在前面说的那几种排序都是将一组记录按关键字大小排成一个有序的序列,而归并排序的思想是:基于合并,将两个或两个以上有序表合并成一个新的有序表 归并排序算法:假设初始序列含有n个记录,首先将这n个记录看成n个有序的子序列,每个子序列长度为1,然后两两归并,得到n/2个长度为2(n为奇数的时候,最后一个序列的长度为1)的有序子序列.在此基础上,再对长度为2的有序子序列进行亮亮归并,得到若干个长度为4的有序子序列.如此重

  • java数据结构与算法之快速排序详解

    本文实例讲述了java数据结构与算法之快速排序.分享给大家供大家参考,具体如下: 交换类排序的另一个方法,即快速排序. 快速排序:改变了冒泡排序中一次交换仅能消除一个逆序的局限性,是冒泡排序的一种改进:实现了一次交换可消除多个逆序.通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列. 步骤: 1.从数列中挑出一个元素,称为 "基准"(piv

  • java数据结构与算法之插入排序详解

    本文实例讲述了java数据结构与算法之插入排序.分享给大家供大家参考,具体如下: 复习之余,就将数据结构中关于排序的这块知识点整理了一下,写下来是想与更多的人分享,最关键的是做一备份,为方便以后查阅. 排序 1.概念: 有n个记录的序列{R1,R2,.......,Rn}(此处注意:1,2,n 是下表序列,以下是相同的作用),其相应关键字的序列是{K1,K2,.........,Kn}.通过排序,要求找出当前下标序列1,2,......,n的一种排列p1,p2,........pn,使得相应关键

  • java数据结构与算法之冒泡排序详解

    本文实例讲述了java数据结构与算法之冒泡排序.分享给大家供大家参考,具体如下: 前面文章讲述的排序算法都是基于插入类的排序,这篇文章开始介绍交换类的排序算法,即:冒泡排序.快速排序(冒泡排序的改进). 交换类的算法:通过交换逆序元素进行排序的方法. 冒泡排序:反复扫描待排序记录序列,在扫描的过程中,顺次比较相邻的两个元素的大小,若逆序就交换位置. 算法实现代码如下: package exp_sort; public class BubbleSort { public static void b

  • Java实现SHA算法的方法详解

    本文实例讲述了Java实现SHA算法的方法.分享给大家供大家参考,具体如下: 一 简介 安全散列算法 固定长度摘要信息 二 SHA算法 SHA-1.SHA-2(SHA-224.SHA-256.SHA384.SHA-512) 三 SHA算法实现 package com.imooc.security.sha; import java.security.MessageDigest; import java.security.NoSuchAlgorithmException; import java.s

  • Java实现RSA算法的方法详解

    本文实例讲述了Java实现RSA算法的方法.分享给大家供大家参考,具体如下: 一 介绍 唯一广泛接受并实现 用于数据加密和数字签名 公钥加密.私钥解密 私钥加密.公钥解密 二 RSA参数说明 三 实现 package com.imooc.security.rsa; import java.security.KeyFactory; import java.security.KeyPair; import java.security.KeyPairGenerator; import java.sec

  • Java经典排序算法之归并排序详解

    一.归并排序 归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用.将已有序的子序列合并,得到完全有序的序列:即先使每个子序列有序,再使子序列段间有序.若将两个有序表合并成一个有序表,称为二路归并. 归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1:否则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直

随机推荐