使用 PyTorch 实现 MLP 并在 MNIST 数据集上验证方式

简介

这是深度学习课程的第一个实验,主要目的就是熟悉 Pytorch 框架。MLP 是多层感知器,我这次实现的是四层感知器,代码和思路参考了网上的很多文章。个人认为,感知器的代码大同小异,尤其是用 Pytorch 实现,除了层数和参数外,代码都很相似。

Pytorch 写神经网络的主要步骤主要有以下几步:

1 构建网络结构

2 加载数据集

3 训练神经网络(包括优化器的选择和 Loss 的计算)

4 测试神经网络

下面将从这四个方面介绍 Pytorch 搭建 MLP 的过程。

项目代码地址:lab1

过程

构建网络结构

神经网络最重要的就是搭建网络,第一步就是定义网络结构。我这里是创建了一个四层的感知器,参数是根据 MNIST 数据集设定的,网络结构如下:

# 建立一个四层感知机网络
class MLP(torch.nn.Module):  # 继承 torch 的 Module
  def __init__(self):
    super(MLP,self).__init__()  #
    # 初始化三层神经网络 两个全连接的隐藏层,一个输出层
    self.fc1 = torch.nn.Linear(784,512) # 第一个隐含层
    self.fc2 = torch.nn.Linear(512,128) # 第二个隐含层
    self.fc3 = torch.nn.Linear(128,10)  # 输出层

  def forward(self,din):
    # 前向传播, 输入值:din, 返回值 dout
    din = din.view(-1,28*28)    # 将一个多行的Tensor,拼接成一行
    dout = F.relu(self.fc1(din))  # 使用 relu 激活函数
    dout = F.relu(self.fc2(dout))
    dout = F.softmax(self.fc3(dout), dim=1) # 输出层使用 softmax 激活函数
    # 10个数字实际上是10个类别,输出是概率分布,最后选取概率最大的作为预测值输出
    return dout

网络结构其实很简单,设置了三层 Linear。隐含层激活函数使用 Relu; 输出层使用 Softmax。网上还有其他的结构使用了 droupout,我觉得入门的话有点高级,而且放在这里并没有什么用,搞得很麻烦还不能提高准确率。

加载数据集

第二步就是定义全局变量,并加载 MNIST 数据集:

# 定义全局变量
n_epochs = 10   # epoch 的数目
batch_size = 20 # 决定每次读取多少图片

# 定义训练集个测试集,如果找不到数据,就下载
train_data = datasets.MNIST(root = './data', train = True, download = True, transform = transforms.ToTensor())
test_data = datasets.MNIST(root = './data', train = True, download = True, transform = transforms.ToTensor())
# 创建加载器
train_loader = torch.utils.data.DataLoader(train_data, batch_size = batch_size, num_workers = 0)
test_loader = torch.utils.data.DataLoader(test_data, batch_size = batch_size, num_workers = 0)

这里参数很多,所以就有很多需要注意的地方了:

root 参数的文件夹即使不存在也没关系,会自动创建

transform 参数,如果不知道要对数据集进行什么变化,这里可自动忽略

batch_size 参数的大小决定了一次训练多少数据,相当于定义了每个 epoch 中反向传播的次数

num_workers 参数默认是 0,即不并行处理数据;我这里设置大于 0 的时候,总是报错,建议设成默认值

如果不理解 epoch 和 batch_size,可以上网查一下资料。(我刚开始学深度学习的时候也是不懂的)

训练神经网络

第三步就是训练网络了,代码如下:

# 训练神经网络
def train():
  # 定义损失函数和优化器
  lossfunc = torch.nn.CrossEntropyLoss()
  optimizer = torch.optim.SGD(params = model.parameters(), lr = 0.01)
  # 开始训练
  for epoch in range(n_epochs):
    train_loss = 0.0
    for data,target in train_loader:
      optimizer.zero_grad()  # 清空上一步的残余更新参数值
      output = model(data)  # 得到预测值
      loss = lossfunc(output,target) # 计算两者的误差
      loss.backward()     # 误差反向传播, 计算参数更新值
      optimizer.step()    # 将参数更新值施加到 net 的 parameters 上
      train_loss += loss.item()*data.size(0)
    train_loss = train_loss / len(train_loader.dataset)
    print('Epoch: {} \tTraining Loss: {:.6f}'.format(epoch + 1, train_loss))

训练之前要定义损失函数和优化器,这里其实有很多学问,但本文就不讲了,理论太多了。

训练过程就是两层 for 循环:外层是遍历训练集的次数;内层是每次的批次(batch)。最后,输出每个 epoch 的 loss。(每次训练的目的是使 loss 函数减小,以达到训练集上更高的准确率)

测试神经网络

最后,就是在测试集上进行测试,代码如下:

# 在数据集上测试神经网络
def test():
  correct = 0
  total = 0
  with torch.no_grad(): # 训练集中不需要反向传播
    for data in test_loader:
      images, labels = data
      outputs = model(images)
      _, predicted = torch.max(outputs.data, 1)
      total += labels.size(0)
      correct += (predicted == labels).sum().item()
  print('Accuracy of the network on the test images: %d %%' % (
    100 * correct / total))
  return 100.0 * correct / total

这个测试的代码是同学给我的,我觉得这个测试的代码特别好,很简洁,一直用的这个。

代码首先设置 torch.no_grad(),定义后面的代码不需要计算梯度,能够节省一些内存空间。然后,对测试集中的每个 batch 进行测试,统计总数和准确数,最后计算准确率并输出。

通常是选择边训练边测试的,这里先就按步骤一步一步来做。

有的测试代码前面要加上 model.eval(),表示这是训练状态。但这里不需要,如果没有 Batch Normalization 和 Dropout 方法,加和不加的效果是一样的。

完整代码

'''
系统环境: Windows10
Python版本: 3.7
PyTorch版本: 1.1.0
cuda: no
'''
import torch
import torch.nn.functional as F  # 激励函数的库
from torchvision import datasets
import torchvision.transforms as transforms
import numpy as np

# 定义全局变量
n_epochs = 10   # epoch 的数目
batch_size = 20 # 决定每次读取多少图片

# 定义训练集个测试集,如果找不到数据,就下载
train_data = datasets.MNIST(root = './data', train = True, download = True, transform = transforms.ToTensor())
test_data = datasets.MNIST(root = './data', train = True, download = True, transform = transforms.ToTensor())
# 创建加载器
train_loader = torch.utils.data.DataLoader(train_data, batch_size = batch_size, num_workers = 0)
test_loader = torch.utils.data.DataLoader(test_data, batch_size = batch_size, num_workers = 0)

# 建立一个四层感知机网络
class MLP(torch.nn.Module):  # 继承 torch 的 Module
  def __init__(self):
    super(MLP,self).__init__()  #
    # 初始化三层神经网络 两个全连接的隐藏层,一个输出层
    self.fc1 = torch.nn.Linear(784,512) # 第一个隐含层
    self.fc2 = torch.nn.Linear(512,128) # 第二个隐含层
    self.fc3 = torch.nn.Linear(128,10)  # 输出层

  def forward(self,din):
    # 前向传播, 输入值:din, 返回值 dout
    din = din.view(-1,28*28)    # 将一个多行的Tensor,拼接成一行
    dout = F.relu(self.fc1(din))  # 使用 relu 激活函数
    dout = F.relu(self.fc2(dout))
    dout = F.softmax(self.fc3(dout), dim=1) # 输出层使用 softmax 激活函数
    # 10个数字实际上是10个类别,输出是概率分布,最后选取概率最大的作为预测值输出
    return dout

# 训练神经网络
def train():
  #定义损失函数和优化器
  lossfunc = torch.nn.CrossEntropyLoss()
  optimizer = torch.optim.SGD(params = model.parameters(), lr = 0.01)
  # 开始训练
  for epoch in range(n_epochs):
    train_loss = 0.0
    for data,target in train_loader:
      optimizer.zero_grad()  # 清空上一步的残余更新参数值
      output = model(data)  # 得到预测值
      loss = lossfunc(output,target) # 计算两者的误差
      loss.backward()     # 误差反向传播, 计算参数更新值
      optimizer.step()    # 将参数更新值施加到 net 的 parameters 上
      train_loss += loss.item()*data.size(0)
    train_loss = train_loss / len(train_loader.dataset)
    print('Epoch: {} \tTraining Loss: {:.6f}'.format(epoch + 1, train_loss))
    # 每遍历一遍数据集,测试一下准确率
    test()

# 在数据集上测试神经网络
def test():
  correct = 0
  total = 0
  with torch.no_grad(): # 训练集中不需要反向传播
    for data in test_loader:
      images, labels = data
      outputs = model(images)
      _, predicted = torch.max(outputs.data, 1)
      total += labels.size(0)
      correct += (predicted == labels).sum().item()
  print('Accuracy of the network on the test images: %d %%' % (
    100 * correct / total))
  return 100.0 * correct / total

# 声明感知器网络
model = MLP()

if __name__ == '__main__':
  train()

10 个 epoch 的训练效果,最后能达到大约 85% 的准确率。可以适当增加 epoch,但代码里没有用 gpu 运行,可能会比较慢。

以上这篇使用 PyTorch 实现 MLP 并在 MNIST 数据集上验证方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Pytorch实现的手写数字mnist识别功能完整示例

    本文实例讲述了Pytorch实现的手写数字mnist识别功能.分享给大家供大家参考,具体如下: import torch import torchvision as tv import torchvision.transforms as transforms import torch.nn as nn import torch.optim as optim import argparse # 定义是否使用GPU device = torch.device("cuda" if torch

  • 用Pytorch训练CNN(数据集MNIST,使用GPU的方法)

    听说pytorch使用比TensorFlow简单,加之pytorch现已支持windows,所以今天装了pytorch玩玩,第一件事还是写了个简单的CNN在MNIST上实验,初步体验的确比TensorFlow方便. 参考代码(在莫烦python的教程代码基础上修改)如下: import torch import torch.nn as nn from torch.autograd import Variable import torch.utils.data as Data import tor

  • Pytorch 数据加载与数据预处理方式

    数据加载分为加载torchvision.datasets中的数据集以及加载自己使用的数据集两种情况. torchvision.datasets中的数据集 torchvision.datasets中自带MNIST,Imagenet-12,CIFAR等数据集,所有的数据集都是torch.utils.data.Dataset的子类,都包含 _ _ len _ (获取数据集长度)和 _ getItem _ _ (获取数据集中每一项)两个子方法. Dataset源码如上,可以看到其中包含了两个没有实现的子

  • Pytorch 神经网络—自定义数据集上实现教程

    第一步.导入需要的包 import os import scipy.io as sio import numpy as np import torch import torch.nn as nn import torch.backends.cudnn as cudnn import torch.optim as optim from torch.utils.data import Dataset, DataLoader from torchvision import transforms, ut

  • 详解PyTorch手写数字识别(MNIST数据集)

    MNIST 手写数字识别是一个比较简单的入门项目,相当于深度学习中的 Hello World,可以让我们快速了解构建神经网络的大致过程.虽然网上的案例比较多,但还是要自己实现一遍.代码采用 PyTorch 1.0 编写并运行. 导入相关库 import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, t

  • 使用 PyTorch 实现 MLP 并在 MNIST 数据集上验证方式

    简介 这是深度学习课程的第一个实验,主要目的就是熟悉 Pytorch 框架.MLP 是多层感知器,我这次实现的是四层感知器,代码和思路参考了网上的很多文章.个人认为,感知器的代码大同小异,尤其是用 Pytorch 实现,除了层数和参数外,代码都很相似. Pytorch 写神经网络的主要步骤主要有以下几步: 1 构建网络结构 2 加载数据集 3 训练神经网络(包括优化器的选择和 Loss 的计算) 4 测试神经网络 下面将从这四个方面介绍 Pytorch 搭建 MLP 的过程. 项目代码地址:la

  • tensorflow实现残差网络方式(mnist数据集)

    介绍 残差网络是何凯明大神的神作,效果非常好,深度可以达到1000层.但是,其实现起来并没有那末难,在这里以tensorflow作为框架,实现基于mnist数据集上的残差网络,当然只是比较浅层的. 如下图所示: 实线的Connection部分,表示通道相同,如上图的第一个粉色矩形和第三个粉色矩形,都是3x3x64的特征图,由于通道相同,所以采用计算方式为H(x)=F(x)+x 虚线的的Connection部分,表示通道不同,如上图的第一个绿色矩形和第三个绿色矩形,分别是3x3x64和3x3x12

  • TensorFlow神经网络创建多层感知机MNIST数据集

    前面使用TensorFlow实现一个完整的Softmax Regression,并在MNIST数据及上取得了约92%的正确率. 前文传送门: TensorFlow教程Softmax逻辑回归识别手写数字MNIST数据集 现在建含一个隐层的神经网络模型(多层感知机). import tensorflow as tf import numpy as np import input_data mnist = input_data.read_data_sets('data/', one_hot=True)

  • pytorch 把MNIST数据集转换成图片和txt的方法

    本文介绍了pytorch 把MNIST数据集转换成图片和txt的方法,分享给大家,具体如下: 1.下载Mnist 数据集 import os # third-party library import torch import torch.nn as nn from torch.autograd import Variable import torch.utils.data as Data import torchvision import matplotlib.pyplot as plt # t

  • 关于Pytorch的MNIST数据集的预处理详解

    关于Pytorch的MNIST数据集的预处理详解 MNIST的准确率达到99.7% 用于MNIST的卷积神经网络(CNN)的实现,具有各种技术,例如数据增强,丢失,伪随机化等. 操作系统:ubuntu18.04 显卡:GTX1080ti python版本:2.7(3.7) 网络架构 具有4层的CNN具有以下架构. 输入层:784个节点(MNIST图像大小) 第一卷积层:5x5x32 第一个最大池层 第二卷积层:5x5x64 第二个最大池层 第三个完全连接层:1024个节点 输出层:10个节点(M

  • Pytorch使用MNIST数据集实现基础GAN和DCGAN详解

    原始生成对抗网络Generative Adversarial Networks GAN包含生成器Generator和判别器Discriminator,数据有真实数据groundtruth,还有需要网络生成的"fake"数据,目的是网络生成的fake数据可以"骗过"判别器,让判别器认不出来,就是让判别器分不清进入的数据是真实数据还是fake数据.总的来说是:判别器区分真实数据和fake数据的能力越强越好:生成器生成的数据骗过判别器的能力越强越好,这个是矛盾的,所以只能

  • Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

    CGAN的全拼是Conditional Generative Adversarial Networks,条件生成对抗网络,在初始GAN的基础上增加了图片的相应信息. 这里用传统的卷积方式实现CGAN. import torch from torch.utils.data import DataLoader from torchvision.datasets import MNIST from torchvision import transforms from torch import opti

  • pytorch GAN伪造手写体mnist数据集方式

    一,mnist数据集 形如上图的数字手写体就是mnist数据集. 二,GAN原理(生成对抗网络) GAN网络一共由两部分组成:一个是伪造器(Generator,简称G),一个是判别器(Discrimniator,简称D) 一开始,G由服从某几个分布(如高斯分布)的噪音组成,生成的图片不断送给D判断是否正确,直到G生成的图片连D都判断以为是真的.D每一轮除了看过G生成的假图片以外,还要见数据集中的真图片,以前者和后者得到的损失函数值为依据更新D网络中的权值.因此G和D都在不停地更新权值.以下图为例

  • pytorch:实现简单的GAN示例(MNIST数据集)

    我就废话不多说了,直接上代码吧! # -*- coding: utf-8 -*- """ Created on Sat Oct 13 10:22:45 2018 @author: www """ import torch from torch import nn from torch.autograd import Variable import torchvision.transforms as tfs from torch.utils.dat

随机推荐