Python 数据可视化之Seaborn详解

目录
  • 安装
  • 散点图
  • 线图
  • 条形图
  • 直方图
  • 总结

安装

要安装 seaborn,请在终端中输入以下命令。

pip install seaborn

Seaborn 建立在 Matplotlib 之上,因此它也可以与 Matplotlib 一起使用。一起使用 Matplotlib 和 Seaborn 是一个非常简单的过程。我们只需要像之前一样调用 Seaborn Plotting 函数,然后就可以使用 Matplotlib 的自定义函数了。

注意: Seaborn 加载了提示、虹膜等数据集,但在本教程中,我们将使用 Pandas 加载这些数据集。

例子:

# 导包
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd

# 读取数据库
data = pd.read_csv("tips.csv")
# 画线图
sns.lineplot(x="sex", y="total_bill", data=data)
# 使用 Matplotlib 设置标题
plt.title('Title using Matplotlib Function')
plt.show()

输出:

散点图

散点图是使用scatterplot() 方法绘制的。这类似于 Matplotlib,但需要额外的参数数据。

# 导包
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
# 读取数据库
data = pd.read_csv("tips.csv")
sns.scatterplot(x='day', y='tip', data=data,)
plt.show()

输出:

你会发现在使用 Matplotlib 时,如果你想根据sex为这个图的每个点着色会很困难。 但在散点图中,它可以在色调参数的帮助下完成。

例子:

# 导包
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
# 读取数据库
data = pd.read_csv("tips.csv")
sns.scatterplot(x='day', y='tip', data=data,
			hue='sex')
plt.show()

输出:

线图

Seaborn 中的 Line Plot 使用 lineplot() 方法绘制。 在这种情况下,我们也可以只传递 data 参数。

示例:

# 导包
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd

# 读取数据库
data = pd.read_csv("tips.csv")
sns.lineplot(x='day', y='tip', data=data)
plt.show()

输出:

示例 2:

# 导包
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd

# 读取数据库
data = pd.read_csv("tips.csv")
# 仅使用数据属性
sns.lineplot(data=data.drop(['total_bill'], axis=1))
plt.show()

输出:

条形图

Seaborn 中的条形图可以使用barplot()方法.

例子:

# 导包
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd

# 读取数据库
data = pd.read_csv("tips.csv")
sns.barplot(x='day',y='tip', data=data,
			hue='sex')
plt.show()

输出:

直方图

Seaborn 中的直方图可以使用histplot() 函数绘制。

例子:

# 导包
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd

# 读取数据库
data = pd.read_csv("tips.csv")
sns.histplot(x='total_bill', data=data, kde=True, hue='sex')
plt.show()

输出:

在浏览完所有这些绘图后,您一定已经注意到,使用 Seaborn 自定义绘图比使用 Matplotlib 容易得多。 它也是基于 matplotlib 构建的,那么我们也可以在使用 Seaborn 时使用 matplotlib 函数。下一节我们继续谈第三个库——Bokeh

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注我们的更多内容!

(0)

相关推荐

  • 如何用Python数据可视化来分析用户留存率

    关于"漏斗图" 漏斗图常用于用户行为的转化率分析,例如通过漏斗图来分析用户购买流程中各个环节的转化率.当然在整个分析过程当中,我们会把流程优化前后的漏斗图放在一起,进行比较分析,得出相关的结论,今天小编就用"matplotlib"."plotly"以及"pyecharts"这几个模块来为大家演示一下怎么画出好看的漏斗图首先我们先要导入需要用到的模块以及数据, import matplotlib.pyplot as plt im

  • Python数据可视化库seaborn的使用总结

    seaborn是python中的一个非常强大的数据可视化库,它集成了matplotlib,下图为seaborn的官网,如果遇到疑惑的地方可以到官网查看.http://seaborn.pydata.org/ 从官网的主页我们就可以看出,seaborn在数据可视化上真的非常强大. 1.首先我们还是需要先引入库,不过这次要用到的python库比较多. import numpy as np import pandas as pd import matplotlib as mpl import matpl

  • Python数据可视化JupyterNotebook绘图生成高清图片

    大家好,我是小五???? 最近有小伙伴问了个问题:如何在jupyter notebook,用Matplotlib画图时能够更"高清"? 今天正好跟大家聊聊,解决办法. 先举个小例子,用 Matplotlib 绘制极坐标图: import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline s = pd.Series(np.arange(20)) fig = plt.figu

  • python数据可视化Pyecharts库sankey修改桑葚图颜色

    目录 在上一篇关于绘画Sankey桑葚图的文章里,已经介绍过大致的过程,本文主要解决如何自定义/修改 所想要的颜色, 如下所示一个桑葚图: 想要修改Phenotype1, 使用itemStyle中的属性color,给每个结点添加一个字典属性,设置所需要的颜色即可. nodes = [{'name':'Phenotype 1','itemStyle':{'color':"#FA8072"}}, {'name':'Phenotype 2','itemStyle':{'color':&quo

  • Python中seaborn库之countplot的数据可视化使用

    在Python数据可视化中,seaborn较好的提供了图形的一些可视化功效. seaborn官方文档见链接:http://seaborn.pydata.org/api.html countplot是seaborn库中分类图的一种,作用是使用条形显示每个分箱器中的观察计数.接下来,对seaborn中的countplot方法进行详细的一个讲解,希望可以帮助到刚入门的同行. 导入seaborn库 import seaborn as sns 使用countplot sns.countplot() cou

  • Python 数据可视化之Seaborn详解

    目录 安装 散点图 线图 条形图 直方图 总结 安装 要安装 seaborn,请在终端中输入以下命令. pip install seaborn Seaborn 建立在 Matplotlib 之上,因此它也可以与 Matplotlib 一起使用.一起使用 Matplotlib 和 Seaborn 是一个非常简单的过程.我们只需要像之前一样调用 Seaborn Plotting 函数,然后就可以使用 Matplotlib 的自定义函数了. 注意: Seaborn 加载了提示.虹膜等数据集,但在本教程

  • Python数据可视化绘图实例详解

    目录 利用可视化探索图表 1.数据可视化与探索图 2.常见的图表实例 数据探索实战分享 1.2013年美国社区调查 2.波士顿房屋数据集 利用可视化探索图表 1.数据可视化与探索图 数据可视化是指用图形或表格的方式来呈现数据.图表能够清楚地呈现数据性质, 以及数据间或属性间的关系,可以轻易地让人看图释义.用户通过探索图(Exploratory Graph)可以了解数据的特性.寻找数据的趋势.降低数据的理解门槛. 2.常见的图表实例 本章主要采用 Pandas 的方式来画图,而不是使用 Matpl

  • Python 数据可视化之Matplotlib详解

    目录 使用的数据库 tips 数据库 Matplotlib 散点图 折线图 条形图 直方图 总结 在深入研究这些库之前,首先,我们需要一个数据库来绘制数据.我们将在本完整教程中使用 tips database.让我们讨论一下这个数据库的简介. 使用的数据库 tips 数据库 tips 数据库是20世纪90年代初期顾客在餐厅的两个半月的小费记录.它包含 6 列,例如 total_bill.tip.sex.smoker.day.time.size. 您可以从这里下载 tips 数据库. 例子: im

  • Python 数据可视化之Bokeh详解

    目录 安装 散点图 折线图 条形图 交互式数据可视化 Interactive Legends 添加小部件 按钮 复选框 单选按钮 总结 安装 要安装此类型,请在终端中输入以下命令. pip install bokeh 散点图 散点图中散景可以使用绘图模块的散射()方法被绘制.这里分别传递 x 和 y 坐标. 例子: # 导入模块 from bokeh.plotting import figure, output_file, show from bokeh.palettes import magm

  • Python数据可视化之Seaborn的使用详解

    目录 1. 安装 seaborn 2.准备数据 3.背景与边框 3.1 设置背景风格 3.2 其他 3.3 边框控制 4. 绘制 散点图 5. 绘制 折线图 5.1 使用 replot()方法 5.2 使用 lineplot()方法 6. 绘制直方图 displot() 7. 绘制条形图 barplot() 8. 绘制线性回归模型 9. 绘制 核密度图 kdeplot() 9.1 一般核密度图 9.2 边际核密度图 10. 绘制 箱线图 boxplot() 11. 绘制 提琴图 violinpl

  • Python Matplotlib数据可视化模块使用详解

    目录 前言 1 matplotlib 开发环境搭建 2 绘制基础 2.1 绘制直线 2.2 绘制折线 2.3 设置标签文字和线条粗细 2.4 绘制一元二次方程的曲线 y=x^2 2.5 绘制正弦曲线和余弦曲线 3 绘制散点图 4 绘制柱状图 5 绘制饼状图 6 绘制直方图 7 绘制等高线图 8 绘制三维图 总结 本文主要介绍python 数据可视化模块 Matplotlib,并试图对其进行一个详尽的介绍. 通过阅读本文,你可以: 了解什么是 Matplotlib 掌握如何用 Matplotlib

  • Python数据存储之 h5py详解

    1.Python数据存储(压缩) (1)numpy.save , numpy.savez , scipy.io.savemat numpy和scipy内建的数据存储方式. (2)cPickle + gzip cPickle是pickle内建的数据存储方式,gzip是常用的文件压缩模块. (3)h5py h5py是对HDF5文件格式进行读写的python包,关于h5py更多介绍与安装,参考官方网站 关于HDF5,参考官方网站.: 一个HDF5文件就是一个由两种基本数据对象(groups and d

  • python数据XPath使用案例详解

    目录 XPath XPath使用方法 xpath解析原理: 安装lxml 案例-58二手房 XPath XPath即为XML路径语言(XML Path Language),它是一种用来确定XML文档中某部分位置的语言. XPath使用方法 xpath解析原理: 1.实例化一个etree的对象,且需要将被解析的页面源代码数据加载到该对象中 2.调用etree对象中的xpath方法结合着xpath表达式实现标签的定位和内容的捕获 安装lxml pip install -i https://mirro

  • Python 数据科学 Matplotlib图库详解

    Matplotlib 是 Python 的二维绘图库,用于生成符合出版质量或跨平台交互环境的各类图形. 图形解析与工作流 图形解析 工作流 Matplotlib 绘图的基本步骤: 1  准备数据 2  创建图形 3 绘图 4 自定义设置 5 保存图形 6 显示图形 import matplotlib.pyplot as plt x = [1,2,3,4] # step1 y = [10,20,25,30] fig = plt.figure() # step2 ax = fig.add_subpl

随机推荐