并发编程之Java内存模型锁的内存语义

目录
  • 1、锁的释放-获取建立的happens-before关系
  • 2、锁释放和获取的内存语义
  • 3、锁内存的语义实现
  • 4、concurrent包的实现

简介:

锁的作用是让临界区互斥执行。本文阐述所得另一个重要知识点——锁的内存语义。

1、锁的释放-获取建立的happens-before关系

锁是Java并发编程中最重要的同步机制。锁除了让临界区互斥执行外,还可以让释放锁的线程向获取同一个锁的线程发送消息。

锁释放-获取的示例代码:

package com.lizba.p1;

/**
 * <p>
 *      锁示例代码
 * </p>
 *
 * @Author: Liziba
 * @Date: 2021/6/10 21:43
 */
public class MonitorExample {

    int a = 0;

    public synchronized void writer() {     // 1;
        a++;                                // 2;
    }                                       // 3;

    public synchronized void reader() {     // 4;
        int i = a;                          // 5;
        System.out.println(i);
    }                                       // 6;

}

假设线程A执行writer()方法,随后线程B执行reader()方法。根据happens-before规范,这个过程包含的happens-before关系可以分为3类。

  • 根据程序次序规则:1 happens-before 2,2 happens-before 3, 4 happens-before 5,5 happens-before 6
  • 根据监视器锁规则:3 happens-before 4
  • 根据happens-before的传递性,2 happens-before 5

上述happens-before关系的图形化表现形式如图:

总结:

线程A在释放锁之前所有可见的共享变量,在线程B获取同一个锁之后,将立即变得对B线程可见。

2、锁释放和获取的内存语义

当线程释放锁时,JMM会把该线程对应的本地内存中的共享变量刷新到主内存中。以上述MonitorExample程序为例,A线程释放锁后共享数据的状态

共享数据的状态示意图如下所示:

当线程获取锁时,JMM会把该线程对应的本地内存置为无效。从而使得被监视器锁保护的临界区代码必须从主内存中读取共享变量。

锁获取的状态示意图:

对比锁释放-获取锁的内存语义与volatile写-读的内存语义可以看出:锁释放与volatile写有相同的内存语义;锁获取与volatile读有相同的内存语义。

总结:

  • 线程A释放锁,实质上是线程A向接下来要获取这个锁的某个线程发出了(线程A对共享变量所做修改的)消息。
  • 线程B获取锁,实质上是线程B接受了之前某个线程发出的(在释放这个锁对共享变量锁做的修改的)消息。
  • 线程A是否锁,随后线程B获取这个锁,这个过程实质上是线程A通过主内存向线程B发送消息。

3、锁内存的语义实现

分析ReentrantLock的源代码,来分析锁内存语义的具体实现机制。

示例代码:

package com.lizba.p1;

import java.util.concurrent.locks.ReentrantLock;

/**
 * <p>
 *  ReentrantLock示例代码
 * </p>
 *
 * @Author: Liziba
 * @Date: 2021/6/10 22:17
 */
public class ReentrantLockExample {

    int a = 0;
    ReentrantLock lock = new ReentrantLock();

    public void writer() {
        lock.lock();                 // 获取锁
        try {
            a++;
        } finally {
            lock.unlock();          // 释放锁
        }
    }

    public void reader() {
        lock.lock();                // 获取锁
        try {
            int i = a;
            System.out.println(i);
        } finally {
            lock.unlock();          // 释放锁
        }
    }

}

ReentrantLock中,调用lock()方法获取锁;调用unlock()方法释放锁。

ReentrantLock的实现依赖于Java同步器框架AbstractQueuedSynchronized(AQS) 。AQS使用一个整型的volatile变量(state)来维护同步状态,这个volatile变量是ReentrantLock内存语义实现的关键。

ReetrantLock的类图:

ReentrantLock分为公平锁和非公平锁,首先分析公平锁。

使用公平锁时,加锁方法lock()的调用轨迹如下:

  • ReentrantLock: lock(
  • FairSync: lock()
  • AbstractQueuedSynchronizer: acquire(int arg)
  • ReentrantLock: tryAcquire(int acquires)

第4步开始真的加锁,下面是该方法的源代码:

 protected final boolean tryAcquire(int acquires) {
     final Thread current = Thread.currentThread();
     // 获取锁开始,首先读取volatile变量state
     int c = getState();
     if (c == 0) {
         if (!hasQueuedPredecessors() &&
             compareAndSetState(0, acquires)) {
             setExclusiveOwnerThread(current);
             return true;
         }
     }
     else if (current == getExclusiveOwnerThread()) {
         int nextc = c + acquires;
         if (nextc < 0)
             throw new Error("Maximum lock count exceeded");
         setState(nextc);
         return true;
     }
     return false;
 }

从上面的代码中可以看出,加锁方法首先读取volatile变量state

在使用公平锁时,解锁方法unlock()调用轨迹如下:

  • ReentrantLock: unlock()
  • AbstractQueuedSynchronizer: release(int arg)
  • Sync: tryRelease(int release)

第3步开始真的释放锁,下面是该方法的源代码:

  protected final boolean tryRelease(int releases) {
      int c = getState() - releases;
      if (Thread.currentThread() != getExclusiveOwnerThread())
          throw new IllegalMonitorStateException();
      boolean free = false;
      if (c == 0) {
          free = true;
          setExclusiveOwnerThread(null);
      }
      // 释放锁的最后,写volatile变量state
      setState(c);
      return free;
  }

从上面的代码中可以看出,释放锁的最后写volatile变量state

总结公平锁:

根据volatile的happens-before规则,释放锁的线程在写volatile变量之前可见的共享变量,在获取锁的线程读取到同一个volatile变量后将立即变得对获取锁的线程可见。

现在分析非公平锁:

注意:非公平锁的释放和公平锁的释放完全一致,都是上面的源代码。所以下面只分析非公平锁的获取过程。

使用非公平锁,加锁方法lock()的调用轨迹如下:

  • ReentrantLock: lock()
  • NonfairSync: lock()
  • AbstractQueuedSynchronizer: compareAndSetState(int expect, int update)

第3步开始真的加锁,下面是该方法的源代码:

// 方法1
final boolean nonfairTryAcquire(int acquires) {
      final Thread current = Thread.currentThread();
      int c = getState();
      if (c == 0) {
          // 此方法中开始加锁
          if (compareAndSetState(0, acquires)) {
              setExclusiveOwnerThread(current);
              return true;
          }
      }
      else if (current == getExclusiveOwnerThread()) {
          int nextc = c + acquires;
          if (nextc < 0) // overflow
              throw new Error("Maximum lock count exceeded");
          setState(nextc);
          return true;
      }
      return false;
  }

// 方法2
 protected final boolean compareAndSetState(int expect, int update) {
     // See below for intrinsics setup to support this
     // 该方法是native方法,在JVM中实现
     return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
 }

该方法以原子操作的方式更新state变量,也就是compareAndSet() (CAS)操作。JDK文档对该方法说明如下:如果当前状态值等于预期值,则以原子方式同步状态设置为给定更新的值。此操作具有volatile读和写的内存语义。

接下来分别从编译器和处理器的角度来分析,CAS如何同时具有volatile读和volatile写的内存语义。

编译器的角度:

前文已经讲过,编译器不会对volatile读与volatile读后面的任意内存操作重排序;编译器不会对volatile写和volatile写后前面的任意内存操作重排序。组合这两个条件,意味着同时实现volatile读和volatile写的内存语义,编译器不能对CAS与CAS前面和后面任意内存操作重排序。

处理器的角度:

(本人不太懂C++)这一块总结需要看JVM源码,可能会总结错误,如需要深入理解这一块请查看《Java并发编程艺术》53页。

sun.misc.Unsafe中的compareAndSwapInt源码如下:(不懂Unsafe请看往期文章)

 public final native boolean compareAndSwapInt(Object var1, long var2, int var4, int var5);

这是一个本地方法。这个本地方法会在openJDK中调用C++代码,假设当前是X86处理器,程序会根据当前处理器的类型来决定是非cmpxchg指令添加lock前缀。

  • 程序运行在多处理器上,就为cmpxchg指令加上lock前缀(Lock Cmpxchg
  • 程序运行在单处理器上,就省略lock前缀(单处理器自身会维护单处理器内的顺序一致性,不需要lock前缀提供的内存屏障效果)

intel手册对lock前缀的说明:

  • 对内存的读-改-写操作原子执行。(总线锁定/缓存锁定)
  • 禁止该指令,与之前的读和写指令重排序
  • 把写缓冲区的所有数据刷新到内存中

上面的2、3两点所具有的内存屏障的效果,足以同时实现volatile读和volatile写的内存语义。所以JDK文档说CAS 具有volatile读和volatile写的内存语义对于处理器也是符合的。

公平锁和非公平锁的总结:

  • 公平锁和非公平锁的释放,最后都需要写一个volatile变量state
  • 公平锁获取时,首先会去读volatile变量
  • 非公平锁获取锁时,首先会用CAS更新volatile变量,这个操作同时具有volatile读和volatile写的内存语义

释放锁-获取锁的内存语义的实现方式总结 :

  • 利用volatile变量的写-读所具有的内存语义
  • 利用CAS所附带的volatile读和volatile写的内存语义

4、concurrent包的实现

由于Java的CAS同时具有volatile读和volatile写的内存语义,因此Java线程之间的通信方式有以下4种方式

  • A线程写volatile变量,随后B线程读这个volatile变量
  • A线程写volatile变量,随后B线程用CAS更新这个volatile变量
  • A线程利用CAS更新一个volatile变量,随后B线程用CAS更新这个volatile变量
  • A线程利用CAS更新一个volatile变量,随后B线程读这个volatile变量

Java的CAS会使用现代处理器上提供的高效机器级别的原子指令,这些原子指令以原子方式对内存执行读-改-写操作,这是在多处理器实现同步的关键。同时volatile变量的读/写和CAS可以实现线程之间的通信。这些特性就是Java整个concurrent包的基石。

concurrent包的通用化实现模式:

  • 声明共享变量volatile
  • 使用CAS的原子条件更新来实现线程之间的同步
  • 配合volatile的读/写和CAS具有的volatile读和写的内存语义来实现线程之间的通信。

AQS(java.util.concurrent.locks.AbstractQueuedSynchronizer)、非阻塞数据结构和原子变量类(java.util.concurrent.atomic包中的类),这些concurrent包中基础类都是使用这个模式来实现的,而concurrent包中的高层类又是依赖于这些基础类。

图示concurrent包的实现示意图:

到此这篇关于并发编程之Java内存模型锁的内存语义的文章就介绍到这了,更多相关Java内存模型锁的内存语义内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Java多线程之死锁详解

    目录 1.死锁 2.死锁经典问题--哲学家就餐问题 总结 1.死锁 出现场景:当线程A拥有了A对象的锁,想要去获取B对象的锁:线程B拥有了B对象的锁,想要拥有A对象的锁,两个线程在获取锁的时候,都不会释放已经持有的锁,于是,就造成了死锁. 示例代码: @Slf4j public class ThreadTest { private static Object objectA = new Object(); private static Object objectB = new Object();

  • Java并发编程加锁导致的活跃性问题详解方案

    目录 死锁(Deadlock) 死锁的解决和预防 1.超时释放锁 2.按顺序加锁 3.死锁检测 活锁(Livelock) 避免活锁 饥饿 解决饥饿 性能问题 上下文切换 什么是上下文切换? 减少上下文切换的方法 资源限制 什么是资源限制 资源限制引发的问题 如何解决资源限制的问题 我们主要处理锁带来的问题. 首先就是最出名的死锁 死锁(Deadlock) 什么是死锁 死锁是当线程进入无限期等待状态时发生的情况,因为所请求的锁被另一个线程持有,而另一个线程又等待第一个线程持有的另一个锁 导致互相等

  • java高并发的ReentrantLock重入锁

    目录 synchronized的局限性 ReentrantLock ReentrantLock基本使用 ReentrantLock是可重入锁 ReentrantLock实现公平锁 ReentrantLock获取锁的过程是可中断的 tryLock无参方法 tryLock有参方法 ReentrantLock其他常用的方法 获取锁的4种方法对比 总结 synchronized的局限性 synchronized是java内置的关键字,它提供了一种独占的加锁方式.synchronized的获取和释放锁由j

  • Java多线程之读写锁分离设计模式

    主要完成任务: 1.read read 并行化 2.read write 不允许 3.write write 不允许 public class ReaderWorker extends Thread { private final SharedData data; public ReaderWorker(SharedData data) { this.data = data; } @Override public void run() { while (true) { try { char[]

  • java中synchronized锁的升级过程

    目录 synchronized锁的升级(偏向锁.轻量级锁及重量级锁) java同步锁前置知识点 synchronized同步锁 java对象头 偏向锁 轻量级锁 重量级锁 关于自旋锁 打印偏向锁的参数 synchronized原理解析 一:synchronized原理解析 1:对象头 2:Synchronized在JVM中的实现原理 三.锁的优化 1.锁升级 2.锁粗化 3.锁消除 synchronized锁的升级(偏向锁.轻量级锁及重量级锁) java同步锁前置知识点 1.编码中如果使用锁可以

  • 双重检查锁定模式Java中的陷阱案例

    目录 1.简介 2.Java中的双重检查锁定 3.列举方案 3.1 利用 ThreadLocal 3.2 利用volatile(解决重排序问题) 4.总结 1.简介 双重检查锁定(也叫做双重检查锁定优化)是一种软件设计模式. 它的作用是减少延迟初始化在多线程环境下获取锁的次数,尤其是单例模式下比较突出. 软件设计模式:解决常用问题的通用解决方案.编程中针对一些常见业务固有的模版. 延迟初始化:在编程中,将对象的创建,值计算或其他昂贵过程延迟到第一次使用时进行. 单例模式:在一定范围内,只生成一个

  • 并发编程之Java内存模型锁的内存语义

    目录 1.锁的释放-获取建立的happens-before关系 2.锁释放和获取的内存语义 3.锁内存的语义实现 4.concurrent包的实现 简介: 锁的作用是让临界区互斥执行.本文阐述所得另一个重要知识点--锁的内存语义. 1.锁的释放-获取建立的happens-before关系 锁是Java并发编程中最重要的同步机制.锁除了让临界区互斥执行外,还可以让释放锁的线程向获取同一个锁的线程发送消息. 锁释放-获取的示例代码: package com.lizba.p1; /** * <p>

  • 并发编程之Java内存模型volatile的内存语义

    1.volatile的特性 理解volatile特性的一个好办法是把对volatile变量的单个读/写,看成是使用同一个锁对单个读/写操作做了同步. 代码示例: package com.lizba.p1; /** * <p> * volatile示例 * </p> * * @Author: Liziba * @Date: 2021/6/9 21:34 */ public class VolatileFeatureExample { /** 使用volatile声明64位的long型

  • 并发编程之Java内存模型顺序一致性

    目录 1.数据竞争和顺序一致性 1.1 Java内存模型规范对数据竞争的定义 1.2 JMM对多线程程序的内存一致性做的保证 2.顺序一致性内存模型 2.1 特性 2.2 举例说明顺序一致性模型 2.3 同步程序的顺序一致性效果 2.4 未同步程序的执行特性 3. 64位long型和double型变量写原子性 3.1 CPU.内存和总线简述 3.2 long和double类型的操作 简介: 顺序一致性内存模型是一个理论参考模型,处理器的内存模型和编程语言的内存模型都会以顺序一致性内存模型作为参照

  • Java并发编程之Java内存模型

    目录 1.什么是Java的内存模型 2.为什么需要Java内存模型 3.Java内存模型及操作规范 4.Java内存模型规定的原子操作 5.Java内存模型同步协议 6.Java内存模型的HB法则 JMM的HB法则 总结 1.什么是Java的内存模型 Java内存模型简称JMM(Java Memory Model),JMM是和多线程并发相关的一组规范.各个jvm实现都要遵循这个JMM规范.才能保证Java代码在不同虚拟机顺利运行.因此,JMM 与处理器.缓存.并发.编译器有关.它解决了CPU 多

  • 并发编程之Java内存模型

    目录 一.Java内存模型的基础 1.1 并发编程模型的两个关键问题 1.2 Java内存模型的抽象结构 1.3 从源代码到指令重排序 1.4 写缓冲区和内存屏障 1.4.1 写缓冲区 1.4.2 内存屏障 1.5 happens-before 简介 简介: Java线程之间的通信对程序员完全透明,内存可见性问题很容易困扰Java程序员,这一系列几篇文章将揭开Java内存模型的神秘面纱. 这一系列的文章大致分4个部分,分别是: Java内存模型基础,主要介绍内存模型相关基本概念 Java内存模型

  • Java内存模型final的内存语义

    目录 1.final域的重排序规则final 2.写final域的重排序规则 3.读final与的重排序规则 4.final域为引用类型 5.为什么final引用不能从构造函数内"逸出" 6.final语义在处理器中的实现 7.JSR-133为什么要增强final的语义 上篇并发编程之Java内存模型volatile的内存语义介绍了volatile的内存语义,本文讲述的是final的内存语义,相比之下,final域的读和写更像是普通变量的访问. 1.final域的重排序规则final

  • 浅谈Java并发编程之Lock锁和条件变量

    简单使用Lock锁 Java 5中引入了新的锁机制--java.util.concurrent.locks中的显式的互斥锁:Lock接口,它提供了比synchronized更加广泛的锁定操作.Lock接口有3个实现它的类:ReentrantLock.ReetrantReadWriteLock.ReadLock和ReetrantReadWriteLock.WriteLock,即重入锁.读锁和写锁.lock必须被显式地创建.锁定和释放,为了可以使用更多的功能,一般用ReentrantLock为其实例

  • Java并发编程之ReentrantLock可重入锁的实例代码

    目录 1.ReentrantLock可重入锁概述2.可重入3.可打断4.锁超时5.公平锁6.条件变量 Condition 1.ReentrantLock可重入锁概述 相对于 synchronized 它具备如下特点 可中断 synchronized锁加上去不能中断,a线程应用锁,b线程不能取消掉它 可以设置超时时间 synchronized它去获取锁时,如果对方持有锁,那么它就会进入entryList一直等待下去.而可重入锁可以设置超时时间,规定时间内如果获取不到锁,就放弃锁 可以设置为公平锁

  • Java并发编程之StampedLock锁介绍

    StampedLock: StampedLock是并发包里面JDK8版本新增的一个锁,该锁提供了三种模式的读写控制,当调用获取锁的系列函数时,会返回一个long 型的变量,我们称之为戳记(stamp),这个戳记代表了锁的状态.其中try 系列获取锁的函数,当获取锁失败后会返回为0的stamp值.当调用释放锁和转换锁的方法时需要传入获取锁时返回的stamp值. StampedLock提供的三种读写模式的锁分别如下: 写锁witeLock: 是一个排它锁或者独占锁,某时只有一个线程可以获取该锁,当一

  • Java并发编程之Volatile变量详解分析

    目录 一.volatile变量的特性 1.1.保证可见性,不保证原子性 1.2.禁止指令重排 二.内存屏障 三.happens-before Volatile关键字是Java提供的一种轻量级的同步机制.Java 语言包含两种内在的同步机制:同步块(或方法)和 volatile 变量, 相比synchronized(synchronized通常称为重量级锁),volatile更轻量级,因为它不会引起线程上下文的切换和调度. 但是volatile 变量的同步性较差(有时它更简单并且开销更低),而且其

随机推荐