详解C++ OpenCV实现图像拼接的原理及方法

目录
  • 前言
  • 一、图像拼接相关原理
    • 图像特征采集
    • 特征提取算法
    • 透视变换
    • 透视矩阵
    • 图像拷贝
  • 二、案例实现
    • Step1:导入目标图片
    • Step2:特征点提取和匹配
    • Step3:图像配准
    • Step4:图像拷贝
    • Step5:图像融合
    • 完整代码
  • 三、总结

前言

本文以实现图像拼接为目标,把分割开的图像进行拼接还原,核心的内容包括:OpenCV图像拼接相关原理以及OpenCV图像拼接案例的实现

一、图像拼接相关原理

图像特征采集

一幅图中总存在着一些独特的像素点,这些点我们可以认为就是这幅图的特征,即为特征点

如何确定左边的是狼,右边的是猪?

获取一幅图中存在的一些独特的像素点,需要解决两个问题:

  • 解决尺度不变性问题,不同大小的图片获取到的特征是一样的
  • 提取到的特征点要稳定,能被精确定位

特征提取算法

名称 支持尺寸不变性 速度
SURF 支持
SIFT 支持 比SURF慢
ORB 不支持 SURF算法快10倍
FAST 没有尺度不变性 比ORB快

透视变换

透视变换是按照物体成像投影规律进行变换,即将物体重新投影到新的成像平面

透视变换常用于机器人视觉导航研究中,由于相机视场与地面存在倾斜角使得物体成像产生畸变,通常通过透视变换实现对物体图像的校正

透视矩阵

[u,v,w] 表示当前平面坐标的x,y,z,如果是平面,那么z=1

[x',y',z'] 表示目标平面坐标的x,y,z,如果是平面,那么z=1

以上公式,我们可以理解为,透视矩阵是原始平面可目标平面之间的一种转换关系

图像拷贝

将一副图像拷贝到另一副图像上的过程

二、案例实现

这是本案例所用到的素材,如下图所示:

我们将上图进行分割,用于实现拼接还原,如下图所示:

Step1:导入目标图片

设置需要处理的两张图片,进行拼接准备工作

    Mat left=imread("C:/Users/86177/Desktop/image/a11.png");//左侧:图片路径
    Mat right=imread("C:/Users/86177/Desktop/image/a22.png");//右侧:图片路径

    imshow("left",left);
    imshow("right",right);

Step2:特征点提取和匹配

用SIFT算法来实现图像拼接是很常用的方法,虽说SURF精确度和稳定性不及SIFT,但是其综合能力还是优越一些

    //创建SURF对象
    Ptr<SURF>surf;   //可以容纳800个特征点
    surf = SURF::create(800);//参数 查找的海森矩阵 create 海森矩阵阀值

    //暴力匹配器
    BFMatcher matcher;

    vector<KeyPoint>key1,key2;
    Mat c,d;

    //寻找特征点
    surf->detectAndCompute(left,Mat(),key2,d);
    surf->detectAndCompute(right,Mat(),key1,c);

    //特征点对比,保存下来
    vector<DMatch>matches;//DMatch 点和点之间的关系
    //使用暴力匹配器匹配特征点,找到存来
    matcher.match(d,c,matches);

    //排序 从小到大
    sort(matches.begin(),matches.end());

    //保留最优的特征点对象
    vector<DMatch>good_matches;//最优

    //设置比例
    int ptrPoint = std::min(50,(int)(matches.size()*0.15));

    for(int i = 0;i < ptrPoint;i++)
    {
        good_matches.push_back(matches[i]);
    }

    //最佳匹配的特征点连成线
    Mat outimg;

    drawMatches(left,key2,right,key1,good_matches,outimg,
                Scalar::all(-1),Scalar::all(-1),
                vector<char>(),DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);

    imshow("outimg",outimg);

Step3:图像配准

我们就可以得到了两幅待拼接图的匹配点集,接下来我们进行图像的配准,即将两张图像转换为同一坐标下

    //特征点配准
    vector<Point2f>imagepoint1,imagepoint2;

    for(int i = 0;i<good_matches.size();i++)
    {
        imagepoint1.push_back(key1[good_matches[i].trainIdx].pt);
        imagepoint2.push_back(key2[good_matches[i].queryIdx].pt);
    }

    //透视转换
    Mat homo = findHomography(imagepoint1,imagepoint2,CV_RANSAC);

    imshow("homo",homo);

Step4:图像拷贝

将我们的左图拷贝到设置好的配准图(右图)上

    //创建拼接后的图,计算图的大小
    int dst_width = imageTranForm.cols;//获取最右点为拼接图长度
    int dst_height = left.rows;

    Mat dst(dst_height,dst_width,CV_8UC3);
    dst.setTo(0);

    imageTranForm.copyTo(dst(Rect(0,0,imageTranForm.cols,imageTranForm.rows)));
    left.copyTo(dst(Rect(0,0,left.cols,left.rows)));

    imshow("dst",dst);

Step5:图像融合

去裂缝处理,让我们的优化两图的连接处,使得拼接自然

PS:上面拼接完的图片看不太出来,拼接处理中,还是建议用上

//优化两图的连接处,使得拼接自然
void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst)
{
    int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界

    double processWidth = img1.cols - start;//重叠区域的宽度
    int rows = dst.rows;
    int cols = img1.cols; //注意,是列数*通道数
    double alpha = 1;//img1中像素的权重
    for (int i = 0; i < rows; i++)
    {
        uchar* p = img1.ptr<uchar>(i);  //获取第i行的首地址
        uchar* t = trans.ptr<uchar>(i);
        uchar* d = dst.ptr<uchar>(i);
        for (int j = start; j < cols; j++)
        {
            //如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据
            if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0)
            {
                alpha = 1;
            }
            else
            {
                //img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好
                alpha = (processWidth - (j - start)) / processWidth;
            }

            d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha);
            d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha);
            d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha);

        }
    }

}

其他图片拼接效果,如下图所示:

完整代码

#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/xfeatures2d.hpp>
#include <opencv2/calib3d.hpp>
#include <opencv2/imgproc.hpp>

using namespace std;
using namespace cv;
using namespace cv::xfeatures2d;

typedef struct
{
    //四个顶点
    Point2f left_top;
    Point2f left_bottom;
    Point2f right_top;
    Point2f right_bottom;
}four_corners_t;

four_corners_t corners;

//计算配准图的四个顶点坐标
void CalcCorners(const Mat& H, const Mat& src)
{
    double v2[] = { 0, 0, 1 };//左上角
    double v1[3];//变换后的坐标值
    Mat V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
    Mat V1 = Mat(3, 1, CV_64FC1, v1);  //列向量

    V1 = H * V2;
    //左上角(0,0,1)
    cout << "V2: " << V2 << endl;
    cout << "V1: " << V1 << endl;
    corners.left_top.x = v1[0] / v1[2];
    corners.left_top.y = v1[1] / v1[2];

    //左下角(0,src.rows,1)
    v2[0] = 0;
    v2[1] = src.rows;
    v2[2] = 1;
    V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
    V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
    V1 = H * V2;
    corners.left_bottom.x = v1[0] / v1[2];
    corners.left_bottom.y = v1[1] / v1[2];

    //右上角(src.cols,0,1)
    v2[0] = src.cols;
    v2[1] = 0;
    v2[2] = 1;
    V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
    V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
    V1 = H * V2;
    corners.right_top.x = v1[0] / v1[2];
    corners.right_top.y = v1[1] / v1[2];

    //右下角(src.cols,src.rows,1)
    v2[0] = src.cols;
    v2[1] = src.rows;
    v2[2] = 1;
    V2 = Mat(3, 1, CV_64FC1, v2);  //列向量
    V1 = Mat(3, 1, CV_64FC1, v1);  //列向量
    V1 = H * V2;
    corners.right_bottom.x = v1[0] / v1[2];
    corners.right_bottom.y = v1[1] / v1[2];

}

//优化两图的连接处,使得拼接自然
void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst)
{
    int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界

    double processWidth = img1.cols - start;//重叠区域的宽度
    int rows = dst.rows;
    int cols = img1.cols; //注意,是列数*通道数
    double alpha = 1;//img1中像素的权重
    for (int i = 0; i < rows; i++)
    {
        uchar* p = img1.ptr<uchar>(i);  //获取第i行的首地址
        uchar* t = trans.ptr<uchar>(i);
        uchar* d = dst.ptr<uchar>(i);
        for (int j = start; j < cols; j++)
        {
            //如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据
            if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0)
            {
                alpha = 1;
            }
            else
            {
                //img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好
                alpha = (processWidth - (j - start)) / processWidth;
            }

            d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha);
            d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha);
            d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha);

        }
    }

}

int main(int argc, char *argv[])
{
    Mat left=imread("C:/Users/86177/Desktop/image/test(1).png");//左侧:图片路径
    Mat right=imread("C:/Users/86177/Desktop/image/test(2).png");//右侧:图片路径

    imshow("left",left);
    imshow("right",right);

    //创建SURF对象
    Ptr<SURF>surf;   //可以容纳800个特征点
    surf = SURF::create(800);//参数 查找的海森矩阵 create 海森矩阵阀值

    //暴力匹配器
    BFMatcher matcher;

    vector<KeyPoint>key1,key2;
    Mat c,d;

    //寻找特征点
    surf->detectAndCompute(left,Mat(),key2,d);
    surf->detectAndCompute(right,Mat(),key1,c);

    //特征点对比,保存下来
    vector<DMatch>matches;//DMatch 点和点之间的关系
    //使用暴力匹配器匹配特征点,找到存来
    matcher.match(d,c,matches);

    //排序 从小到大
    sort(matches.begin(),matches.end());

    //保留最优的特征点对象
    vector<DMatch>good_matches;//最优

    //设置比例
    int ptrPoint = std::min(50,(int)(matches.size()*0.15));

    for(int i = 0;i < ptrPoint;i++)
    {
        good_matches.push_back(matches[i]);
    }

    //最佳匹配的特征点连成线
    Mat outimg;

    drawMatches(left,key2,right,key1,good_matches,outimg,
                Scalar::all(-1),Scalar::all(-1),
                vector<char>(),DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);

    imshow("outimg",outimg);

    //特征点配准
    vector<Point2f>imagepoint1,imagepoint2;

    for(int i = 0;i<good_matches.size();i++)
    {
        imagepoint1.push_back(key1[good_matches[i].trainIdx].pt);
        imagepoint2.push_back(key2[good_matches[i].queryIdx].pt);
    }

    //透视转换
    Mat homo = findHomography(imagepoint1,imagepoint2,CV_RANSAC);

    imshow("homo",homo);

    //四个顶点坐标的转换计算
    CalcCorners(homo,right);

    Mat imageTranForm;
    warpPerspective(right,imageTranForm,homo,
                    Size(MAX(corners.right_top.x,
                             corners.right_bottom.x),
                         left.rows));

    imshow("imageTranForm",imageTranForm);

    //创建拼接后的图,计算图的大小
    int dst_width = imageTranForm.cols;//获取最右点为拼接图长度
    int dst_height = left.rows;

    Mat dst(dst_height,dst_width,CV_8UC3);
    dst.setTo(0);

    imageTranForm.copyTo(dst(Rect(0,0,imageTranForm.cols,imageTranForm.rows)));
    left.copyTo(dst(Rect(0,0,left.cols,left.rows)));

    //优化拼接,主要目的去除黑边
    OptimizeSeam(left,imageTranForm, dst);

    imshow("dst",dst);

    waitKey(0);

    return 0;
}

三、总结

本文的核心内容包括:OpenCV图像拼接相关原理以及OpenCV图像拼接案例的实现

图像拼接在我们日常生活中运用其实算是非常广了,比如说我们现在经常见到的无人机航拍,以及我们手机相机的全景拍摄

图像拼接是我们对图像进行其他处理的基础条件,图像拼接的好坏,将会直接影响了咱们出图的效果!所以学会拼接算法对图像进行拼接处理,很重要!

以上就是详解C++ OpenCV实现图像拼接的原理及方法的详细内容,更多关于C++ OpenCV图像拼接的资料请关注我们其它相关文章!

(0)

相关推荐

  • 使用c++实现OpenCV图像横向&纵向拼接

    功能函数 // 图像拼接 cv::Mat ImageSplicing(vector<cv::Mat> images,int type) { if (type != 0 && type != 1) type = 0; int num = images.size(); int newrow = 0; int newcol = 0; cv::Mat result; // 横向拼接 if (type == 0) { int minrow = 10000; for (int i = 0;

  • OpenCV实现拼接图像的简单方法

    本文实例为大家分享了OpenCV实现拼接图像的具体方法,供大家参考,具体内容如下 用iphone拍摄的两幅图像: 拼接后的图像: 相关代码如下: //读取图像 Mat leftImg=imread("left.jpg"); Mat rightImg=imread("right.jpg"); if(leftImg.data==NULL||rightImg.data==NULL) return; //转化成灰度图 Mat leftGray; Mat rightGray;

  • OpenCV全景图像拼接的实现示例

    本文主要介绍了OpenCV全景图像拼接的实现示例,分享给大家,具体如下: left_01.jpg right_01.jpg Stitcher.py import numpy as np import cv2 class Stitcher: #拼接函数 def stitch(self, images, ratio=0.75, reprojThresh=4.0,showMatches=False): #获取输入图片 (imageB, imageA) = images #检测A.B图片的SIFT关键特

  • C++ OpenCV实战之图像全景拼接

    目录 前言 一.OpenCV Stitcher 1.功能源码 2.效果 二.图像全景拼接 1.特征检测 2.计算单应性矩阵 3.透视变换 4.图像拼接 5.功能源码 6.效果 三.源码 总结 前言 本文将使用OpenCV C++ 进行图像全景拼接.目前使用OpenCV对两幅图像进行拼接大致可以分为两类. 一.使用OpenCV内置API Stitcher 进行拼接. 二.使用特征检测算法匹配两幅图中相似的点.计算变换矩阵.最后对其进行透视变换就可以了. 一.OpenCV Stitcher imag

  • OpenCV实战之图像拼接的示例代码

    目录 背景 实现步骤 一.读取文件 二.单应性矩阵计算 三.图像拼接 总结 背景 图像拼接可以应用到手机中的全景拍摄,也就是将多张图片根据关联信息拼成一张图片: 实现步骤 1.读文件并缩放图片大小: 2.根据特征点和计算描述子,得到单应性矩阵: 3.根据单应性矩阵对图像进行变换,然后平移: 4.图像拼接并输出拼接后结果图: 一.读取文件 第一步实现读取两张图片并缩放到相同尺寸: 代码如下: img1 = cv2.imread('map1.png') img2 = cv2.imread('map2

  • 详解C++ OpenCV实现图像拼接的原理及方法

    目录 前言 一.图像拼接相关原理 图像特征采集 特征提取算法 透视变换 透视矩阵 图像拷贝 二.案例实现 Step1:导入目标图片 Step2:特征点提取和匹配 Step3:图像配准 Step4:图像拷贝 Step5:图像融合 完整代码 三.总结 前言 本文以实现图像拼接为目标,把分割开的图像进行拼接还原,核心的内容包括:OpenCV图像拼接相关原理以及OpenCV图像拼接案例的实现 一.图像拼接相关原理 图像特征采集 一幅图中总存在着一些独特的像素点,这些点我们可以认为就是这幅图的特征,即为特

  • 详解Java线程池和Executor原理的分析

    详解Java线程池和Executor原理的分析 线程池作用与基本知识 在开始之前,我们先来讨论下"线程池"这个概念."线程池",顾名思义就是一个线程缓存.它是一个或者多个线程的集合,用户可以把需要执行的任务简单地扔给线程池,而不用过多的纠结与执行的细节.那么线程池有哪些作用?或者说与直接用Thread相比,有什么优势?我简单总结了以下几点: 减小线程创建和销毁带来的消耗 对于Java Thread的实现,我在前面的一篇blog中进行了分析.Java Thread与内

  • 详解vue的数据binding绑定原理

    自从angular火了以后,各种mvc框架喷涌而出,angular虽然比较火,但是他的坑还是蛮多的,还有许多性能问题被人们吐槽.比如坑爹的脏检查机制,数据binding是受人喜爱的,脏检查就有点-性能低下了.有时候改了一个地方,脏循环要循环多次来保证数据是不是真的变了和是否停止变化了.这样性能就很低了.于是人们开始钻研新的双向数据binding的方法.尤大的vue binding就是本人蛮喜欢的一种实现方式,本文跟随尤大的一个例子来详解vue的数据binding的原理. 数据binding,一般

  • 详解C++虚函数的工作原理

    静态绑定与动态绑定 讨论静态绑定与动态绑定,首先需要理解的是绑定,何为绑定?函数调用与函数本身的关联,以及成员访问与变量内存地址间的关系,称为绑定. 理解了绑定后再理解静态与动态. 静态绑定:指在程序编译过程中,把函数调用与响应调用所需的代码结合的过程,称为静态绑定.发生在编译期. 动态绑定:指在执行期间判断所引用对象的实际类型,根据实际的类型调用其相应的方法.程序运行过程中,把函数调用与响应调用所需的代码相结合的过程称为动态绑定.发生于运行期. C++中动态绑定 在C++中动态绑定是通过虚函数

  • 详解SpringMVC的url-pattern配置及原理剖析

    xml里面配置标签: <!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd" > <web-app> <display-name>Archetype Created Web Application</display-name> &

  • 详解ES6中class的实现原理

    一.在ES6以前实现类和继承 实现类的代码如下: function Person(name, age) { this.name = name; this.age = age; } Person.prototype.speakSomething = function () { console.log("I can speek chinese"); }; 实现继承的代码如下:一般使用原型链继承和call继承混合的形式 function Person(name) { this.name =

  • 详解Vue3 Teleport 的实践及原理

    Vue3 的组合式 API 以及基于 Proxy 响应式原理已经有很多文章介绍过了,除了这些比较亮眼的更新,Vue3 还新增了一个内置组件: Teleport.这个组件的作用主要用来将模板内的 DOM 元素移动到其他位置. 使用场景 业务开发的过程中,我们经常会封装一些常用的组件,例如 Modal 组件.相信大家在使用 Modal 组件的过程中,经常会遇到一个问题,那就是 Modal 的定位问题. 话不多说,我们先写一个简单的 Modal 组件. <!-- Modal.vue --> <

  • 详解Java 中泛型的实现原理

    泛型是 Java 开发中常用的技术,了解泛型的几种形式和实现泛型的基本原理,有助于写出更优质的代码.本文总结了 Java 泛型的三种形式以及泛型实现原理. 泛型 泛型的本质是对类型进行参数化,在代码逻辑不关注具体的数据类型时使用.例如:实现一个通用的排序算法,此时关注的是算法本身,而非排序的对象的类型. 泛型方法 如下定义了一个泛型方法, 声明了一个类型变量,它可以应用于参数,返回值,和方法内的代码逻辑. class GenericMethod{ public <T> T[] sort(T[]

  • 详解MySQL kill 指令的执行原理

    kill 指令有两种写法 " kill query + 线程 id "." kill connection(可缺省) + 线程 id ".分别表示关闭指定线程正在执行的语句.断开指定线程连接的客户端(如果有正在执行的操作会先停止执行的操作再关闭连接).但某些情况下使用 kill query 后使用 show processlist 查看 Command 列为 killed(表示 正在等待回收线程回收,还未回收),这是为什么呢? 在解答这个问题前,需要知道服务器端处理

  • 详解SpringBoot健康检查的实现原理

    SpringBoot自动装配的套路,直接看 spring.factories 文件,当我们使用的时候只需要引入如下依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-actuator</artifactId> </dependency> 然后在 org.springframework.boot.sprin

随机推荐