Python datatime库语法使用详解

目录
  • Python中datetime库的用法
  • datetime.date
  • datetime的time类
  • datetime的timedelta类
  • datetime.timedelta

Python中datetime库的用法

datetime模块用于是date和time模块的合集,datetime有两个常量,MAXYEAR和MINYEAR,分别是9999和1.

datetime模块定义了5个类:

  • 1.datetime.date:表示日期的类
  • 2.datetime.datetime:表示日期时间的类
  • 3.datetime.time:表示时间的类
from datetime import date
from datetime import datetime
from datetime import time
from datetime import timedelta
from datetime import tzinfo

from datetime import * #不知道用啥 全部导入就可以
  • 4.datetime.timedelta:表示时间间隔,即两个时间点的间隔
  • 5.datetime.tzinfo:时区的相关信息

datetime.date

date类有三个参数,datetime.date(year,month,day),返回year-month-day

1.datetime.date.ctime(),返回格式如 Sun Apr 16 00:00:00 2017

2.datetime.date.fromtimestamp(timestamp),根据给定的时间戮,返回一个date对象;datetime.date.today()作用相同

3.datetime.date.isocalendar():返回格式如(year,month,day)的元组,(2017, 15, 6)

4.datetime.date.isoformat():返回格式如YYYY-MM-DD

5.datetime.date.isoweekday():返回给定日期的星期(0-6)星期一=0,星期日=6 这里表明下python3中是从[1-7]表示的 就是本来是星期几现在显示就是星期几

6.datetime.date.replace(year,month,day):替换给定日期,但不改变原日期

7.datetime.date.strftime(format):把日期时间按照给定的format进行格式化。

8.datetime.date.timetuple():返回日期对应的time.struct_time对象

time.struct_time(tm_year=2017, tm_mon=4, tm_mday=15, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=5, tm_yday=105, tm_isdst=-1)

9.datetime.date.weekday():返回日期的星期

python中时间日期格式化符号:

  • %y 两位数的年份表示(00-99)
  • %Y 四位数的年份表示(000-9999)
  • %m 月份(01-12)
  • %d 月内中的一天(0-31)
  • %H 24小时制小时数(0-23)
  • %I 12小时制小时数(01-12)
  • %M 分钟数(00=59)
  • %S 秒(00-59)
  • %a 本地简化星期名称
  • %A 本地完整星期名称
  • %b 本地简化的月份名称
  • %B 本地完整的月份名称
  • %c 本地相应的日期表示和时间表示
  • %j 年内的一天(001-366)
  • %p 本地A.M.或P.M.的等价符
  • %U 一年中的星期数(00-53)星期天为星期的开始
  • %w 星期(0-6),星期天为星期的开始
  • %W 一年中的星期数(00-53)星期一为星期的开始
  • %x 本地相应的日期表示
  • %X 本地相应的时间表示
  • %Z 当前时区的名称
  • %% %号本身

datetime的time类

time类有5个参数:

datetime.time(hour,minute,second,microsecond,tzoninfo),返回08:29:30

  • 1.datetime.time.replace()
  • 2.datetime.time.strftime(format):按照format格式返回时间
  • 3.datetime.time.tzname():返回时区名字
  • 4.datetime.time.utcoffset():返回时区的时间偏移量
  • 5.datetime的datetime类

datetime类有很多参数,datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]]),返回年月日,时分秒

datetime.datetime.ctime() 将datetime.datetime类型转化成str类型,输出:Sun Jul 28 15:47:51 2019

datetime.datetime.now():返回当前系统时间:2019-07-28 15:42:24.765625

datetime.datetime.now().date():返回当前日期时间的日期部分:2019-07-28

datetime.datetime.now().time():返回当前日期时间的时间部分:15:42:24.750000

datetime.datetime.fromtimestamp()
datetime.datetime.replace()

datetime.datetime.strftime():由日期格式转化为字符串格式

datetime.datetime.now().strftime(’%b-%d-%Y %H:%M:%S’)
  ‘Apr-16-2017 21:01:35’

datetime.datetime.strptime():由字符串格式转化为日期格式

datetime.datetime.strptime(‘Apr-16-2017 21:01:35’, ‘%b-%d-%Y %H:%M:%S’)
2017-04-16 21:01:35

datetime的timedelta类

datetime.timedelta

datetime.timedelta用来计算两个datetime.datetime或者datetime.date类型之间的时间差。

def new(cls, days=0, seconds=0, microseconds=0,milliseconds=0, minutes=0, hours=0, weeks=0):

从构造函数中来看,参数可选:days、seconds、microseconds、milliseconds、minutes、hours、weeks,且默认是0。

比如说我们想知道300天前的今天是几号,可以这样实现:

>>> now = datetime.datetime.now().date()
>>> now
datetime.date(2018, 11, 9)
>>> delta = datetime.timedelta(days = 300)
>>> now - delta
datetime.date(2018, 1, 13)

datetime.timedelta()也可以多个参数,比如计算300天12小时前的时间。

>>> now = datetime.datetime.now()
>>> now
datetime.datetime(2018, 11, 9, 15, 30, 36, 156323)
>>> delta = datetime.timedelta(days = 300,hours = 12)
>>> now - delta
datetime.datetime(2018, 1, 13, 3, 30, 36, 156323)

计算总天数和秒数。

>>> datetime.timedelta(days=1,hours = 2).days
1
>>> datetime.timedelta(days=1,hours = 2).total_seconds()
93600.0

到此这篇关于Python datatime库语法使用详解的文章就介绍到这了,更多相关Python datatime库 内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python中关于时间和日期函数的常用计算总结(time和datatime)

    1.获取当前时间的两种方法: 复制代码 代码如下: import datetime,timenow = time.strftime("%Y-%m-%d %H:%M:%S")print nownow = datetime.datetime.now()print now 2.获取上个月最后一天的日期(本月的第一天减去1天) 复制代码 代码如下: last = datetime.date(datetime.date.today().year,datetime.date.today().mon

  • Python datatime库语法使用详解

    目录 Python中datetime库的用法 datetime.date datetime的time类 datetime的timedelta类 datetime.timedelta Python中datetime库的用法 datetime模块用于是date和time模块的合集,datetime有两个常量,MAXYEAR和MINYEAR,分别是9999和1. datetime模块定义了5个类: 1.datetime.date:表示日期的类 2.datetime.datetime:表示日期时间的类

  • python urllib库的使用详解

    相关:urllib是python内置的http请求库,本文介绍urllib三个模块:请求模块urllib.request.异常处理模块urllib.error.url解析模块urllib.parse. 1.请求模块:urllib.request python2 import urllib2 response = urllib2.urlopen('http://httpbin.org/robots.txt') python3 import urllib.request res = urllib.r

  • python标准库OS模块详解

    python标准库OS模块简介 os就是"operating system"的缩写,顾名思义,os模块提供的就是各种 Python 程序与操作系统进行交互的接口.通过使用os模块,一方面可以方便地与操作系统进行交互,另一方面页可以极大增强代码的可移植性.如果该模块中相关功能出错,会抛出OSError异常或其子类异常. 注意 如果是读写文件的话,建议使用内置函数open(): 如果是路径相关的操作,建议使用os的子模块os.path: 如果要逐行读取多个文件,建议使用fileinput模

  • Python requests库用法实例详解

    本文实例讲述了Python requests库用法.分享给大家供大家参考,具体如下: requests是Python中一个第三方库,基于 urllib,采用 Apache2 Licensed 开源协议的 HTTP 库.它比 urllib 更加方便,可以节约我们大量的工作,完全满足 HTTP 测试需求.接下来将记录一下requests的使用: 安装 要使用requests库必须先要安装: pip install requests 创建请求 通过requests库发出一个请求非常简单,首先我们先导入

  • Python jiaba库的使用详解

    目录 jiaba库的使用 1.jieba库的安装 2.统计荷塘月色词频 总结 jiaba库的使用 jieba库是一款优秀的 Python 第三方中文分词库,jieba 支持三种分词模式:精确模式.全模式和搜索引擎模式,下面是三种模式的特点. 精确模式:试图将语句最精确的切分,不存在冗余数据,适合做文本分析 全模式:将语句中所有可能是词的词语都切分出来,速度很快,但是存在冗余数据 搜索引擎模式:在精确模式的基础上,对长词再次进行切分 1.jieba库的安装 全自动安装:easy_install j

  • Python subprocess库的使用详解

    介绍 使用subprocess模块的目的是用于替换os.system等一些旧的模块和方法. 运行python的时候,我们都是在创建并运行一个进程.像Linux进程那样,一个进程可以fork一个子进程,并让这个子进程exec另外一个程序.在Python中,我们通过标准库中的subprocess包来fork一个子进程,并运行一个外部的程序. subprocess包中定义有数个创建子进程的函数,这些函数分别以不同的方式创建子进程,所以我们可以根据需要来从中选取一个使用.另外subprocess还提供了

  • python matplotlib库直方图绘制详解

    例题:假设你获取了250部电影的时长(列表a中),希望统计出这些电影时长的分布状态(比如时长为100分钟到120分钟电影的数量,出现的频率)等信息,你应该如何呈现这些数据? 一些概念及问题: 把数据分为多少组进行统计 组数要适当,太少会有较大的统计误差,太多规律不明显 组数:将数据分组,共分为多少组 组距:指每个小组的两个端点的距离 组数:极差 / 组距,也就是 (最大值-最小值)/ 组距 频数分布直方图与频率分布直方图,hist()方法需增加参数normed 注意:一般来说能够使用plt.hi

  • Python 中Pickle库的使用详解

    在"通过简单示例来理解什么是机器学习"这篇文章里提到了pickle库的使用,本文来做进一步的阐述. 那么为什么需要序列化和反序列化这一操作呢? 1.便于存储.序列化过程将文本信息转变为二进制数据流.这样就信息就容易存储在硬盘之中,当需要读取文件的时候,从硬盘中读取数据,然后再将其反序列化便可以得到原始的数据.在Python程序运行中得到了一些字符串.列表.字典等数据,想要长久的保存下来,方便以后使用,而不是简单的放入内存中关机断电就丢失数据.python模块大全中的Pickle模块就派

  • python随机生成库faker库api实例详解

    废话不多说,直接上代码! # -*- coding: utf-8 -*- # @Author : FELIX # @Date : 2018/6/30 9:49 from faker import Factory # zh_CN 表示中国大陆版 fake = Factory().create('zh_CN') # 产生随机手机号 print(fake.phone_number()) # 产生随机姓名 print(fake.name()) # 产生随机地址 print(fake.address())

  • python简单实现最大似然估计&scipy库的使用详解

    python简单实现最大似然估计 1.scipy库的安装 wim+R输入cmd,然后cd到python的pip路径,即安装:pip install scipy即可 2.导入scipy库 from scipy.sats import norm 导入scipy.sats中的norm 3.案例分析 from scipy.stats import norm import matplotlib.pyplot as plt import numpy as np ''' norm.cdf 返回对应的累计分布函

随机推荐