使用NumPy和pandas对CSV文件进行写操作的实例
数组存储成CSV之类的区隔型文件:
下面代码给随机数生成器指定种子,并生成一个3*4的NumPy数组
将一个数组元素的值设为NaN:
In [26]: import numpy as np In [27]: np.random.seed(42) In [28]: a = np.random.randn(3,4) In [29]: a[2][2] = np.nan In [30]: print(a) [[ 0.49671415 -0.1382643 0.64768854 1.52302986] [-0.23415337 -0.23413696 1.57921282 0.76743473] [-0.46947439 0.54256004 nan -0.46572975]]
NumPy的savetxt()函数是与loadtxt()相对应的一个函数,它能以诸如CSV之类的区隔型文件格式保存数组:
In [31]: np.savetxt('np.csv',a,fmt='%.2f',delimiter=',',header="#1,#2,#3,#4")
上面的函数调用中,我们规定了用以保存数组的文件的名称、数组、可选格式、间隔符和一个可选的标题
通过cat np.csv,可以查看刚才所建的np.csv文件的具体内容
利用随机数组来创建pandas DataFrame:
In [38]: df = pd.DataFrame(a) In [39]: df Out[39]: 0 1 2 3 0 0.496714 -0.138264 0.647689 1.523030 1 -0.234153 -0.234137 1.579213 0.767435 2 -0.469474 0.542560 NaN -0.465730
pandas会自动替我们给数据取好列名
利用pandas的to_csv()方法可以为CSV文件生成一个DataFrame:
In [40]: df.to_csv('pd.csv',float_format='%.2f',na_rep="NAN!")
对于这个方法,我们需要提供文件名、类似于NumPy的savetxt()函数的格式化参数的可选格式串和一个表示NaN的可选字符串
以上这篇使用NumPy和pandas对CSV文件进行写操作的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
Python利用pandas计算多个CSV文件数据值的实例
功能:扫描当前目录下所有CSV文件并对其中文件进行统计,输出统计值到CSV文件 pip install pandas import pandas as pd import glob,os,sys input_path='./' output_fiel='pandas_union_concat.csv' all_files=glob.glob(os.path.join(input_path,'sales_*')) all_data_frames=[] for file in all_files:
-
Python使用pandas处理CSV文件的实例讲解
Python中有许多方便的库可以用来进行数据处理,尤其是Numpy和Pandas,再搭配matplot画图专用模块,功能十分强大. CSV(Comma-Separated Values)格式的文件是指以纯文本形式存储的表格数据,这意味着不能简单的使用Excel表格工具进行处理,而且Excel表格处理的数据量十分有限,而使用Pandas来处理数据量巨大的CSV文件就容易的多了. 我用到的是自己用其他硬件工具抓取得数据,硬件环境是在Linux平台上搭建的,当时数据是在运行脚本后直接输出在termin
-
python 利用pandas将arff文件转csv文件的方法
直接贴代码啦: #coding=utf-8 import pandas as pd def arff_to_csv(fpath): #读取arff数据 if fpath.find('.arff') <0: print('the file is nott .arff file') return f = open(fpath) lines = f.readlines() content = [] for l in lines: content.append(l) datas = [] for c i
-
利用numpy和pandas处理csv文件中的时间方法
环境:numpy,pandas,python3 在机器学习和深度学习的过程中,对于处理预测,回归问题,有时候变量是时间,需要进行合适的转换处理后才能进行学习分析,关于时间的变量如下所示,利用pandas和numpy对csv文件中时间进行处理. date (UTC) Price 01/01/2015 0:00 48.1 01/01/2015 1:00 47.33 01/01/2015 2:00 42.27 #coding:utf-8 import datetime import pandas as
-
使用pandas读取csv文件的指定列方法
根据教程实现了读取csv文件前面的几行数据,一下就想到了是不是可以实现前面几列的数据.经过多番尝试总算试出来了一种方法. 之所以想实现读取前面的几列是因为我手头的一个csv文件恰好有后面几列没有可用数据,但是却一直存在着.原来的数据如下: GreydeMac-mini:chapter06 greyzhang$ cat data.csv 1,name_01,coment_01,,,, 2,name_02,coment_02,,,, 3,name_03,coment_03,,,, 4,name_04
-
python:pandas合并csv文件的方法(图书数据集成)
数据集成:将不同表的数据通过主键进行连接起来,方便对数据进行整体的分析. 两张表:ReaderInformation.csv,ReaderRentRecode.csv ReaderInformation.csv: ReaderRentRecode.csv: pandas读取csv文件,并进行csv文件合并处理: # -*- coding:utf-8 -*- import csv as csv import numpy as np # ------------- # csv读取表格数据 # ---
-
使用NumPy和pandas对CSV文件进行写操作的实例
数组存储成CSV之类的区隔型文件: 下面代码给随机数生成器指定种子,并生成一个3*4的NumPy数组 将一个数组元素的值设为NaN: In [26]: import numpy as np In [27]: np.random.seed(42) In [28]: a = np.random.randn(3,4) In [29]: a[2][2] = np.nan In [30]: print(a) [[ 0.49671415 -0.1382643 0.64768854 1.52302986] [
-
pandas读取csv文件,分隔符参数sep的实例
在python中读取csv文件时,一般操作如下: import pandas as pd pd.read_csv(filename) 该读文件方式,默认是以逗号","作为分割符,若是以其它分隔符,比如制表符"/t",则需要显示的指定分隔符.如下 pd_read_csv(filename,'/t') 但如果遇见某个字段包含了"/t"的字符,比如网址"www.xxx.xx/t-",则也会把字段中的"/t"理解为
-
pandas读取CSV文件时查看修改各列的数据类型格式
下面给大家介绍下pandas读取CSV文件时查看修改各列的数据类型格式,具体内容如下所述: 我们在调bug的时候会经常查看.修改pandas列数据的数据类型,今天就总结一下: 1.查看: Numpy和Pandas的查看方式略有不同,一个是dtype,一个是dtypes print(Array.dtype) #输出int64 print(df.dtypes) #输出Df下所有列的数据格式 a:int64,b:int64 2.修改 import pandas as pd import numpy a
-
Python使用Pandas对csv文件进行数据处理的方法
今天接到一个新的任务,要对一个140多M的csv文件进行数据处理,总共有170多万行,尝试了导入本地的MySQL数据库进行查询,结果用Navicat导入直接卡死....估计是XAMPP套装里面全默认配置的MySQL性能不给力,又尝试用R搞一下吧结果发现光加载csv文件就要3分钟左右的时间,相当不给力啊,翻了翻万能的知乎发现了Python下的一个神器包:Pandas(熊猫们?),加载这个140多M的csv文件两秒钟就搞定,后面的分类汇总等操作也都是秒开,太牛逼了!记录一下这次数据处理的过程: 使用
-
pandas处理csv文件的方法步骤
一.我的需求 对于这样的一个 csv 表,需要将其 (1)将营业部名称和日期和股票代码进行拼接 (2)对于除了买入金额不同的的数据需要将它们的买入金额相加,每个买入金额乘以买卖序号的符号表示该营业名称对应的买入金额 比如:xx公司,20190731,1,股票1,4000,C20201010,xxxx 我这里想要的结果是:xx公司2019713C20201010,4000 二.代码 (1)首先由于文件是 gbk,所以读取是需要注意 encoding (2)日期是int类型,所以需要转化为 字符串
-
python中pandas读取csv文件时如何省去csv.reader()操作指定列步骤
优点: 方便,有专门支持读取csv文件的pd.read_csv()函数. 将csv转换成二维列表形式 支持通过列名查找特定列. 相比csv库,事半功倍 1.读取csv文件 import pandas as pd file="c:\data\test.csv" csvPD=pd.read_csv(file) df = pd.read_csv('data.csv', encoding='gbk') #指定编码 read_csv()方法参数介绍 filepath_or_buf
随机推荐
- Python实现的使用telnet登陆聊天室实例
- python实现JAVA源代码从ANSI到UTF-8的批量转换方法
- iOS开发中Quartz2D绘图路径的使用以及条纹效果的实现
- C#动态加载dll扩展系统功能的方法
- JavaScript的模块化开发框架Sea.js上手指南
- PHP similar_text 字符串的相似性比较函数
- php开发文档 会员收费1期
- 关于python pyqt5安装失败问题的解决方法
- asp飞飞无限级分类v1.0 Asp+sql+存储过程+ajax提供下载
- mysql触发器(Trigger)简明总结和使用实例
- Centos下IP与DNS设置方法详解
- MySQL性能优化 出题业务SQL优化
- show engine innodb status显示信息不全如何解决
- JS实现的表头列头固定页面功能示例
- php流量统计功能的实现代码
- 打工和创业的最大区别小结
- Shell中调用、引用、包含另一个脚本文件的三种方法
- Win2000+Apache+MySql+PHP4+PERL安装使用小结
- JavaScript对Cookie进行读写操作实例
- js链接确认提醒功能