Python使用matplotlib绘制随机漫步图

本文我们来做一个简单的随机漫步数据图,进一步了解matplotlib的使用,

使用Python生成随机漫步数据,再使用matplotlib绘制出来,

随机漫步是这样行走得到的路径: 每次行走都完全是随机的,没有明确的方向,结果是由一系列随机决策决定的。
创建一个RandomWalk雷,随机的选择前进的方向,一共有三个属性,一个是存储随机漫步次数的变量,其他两个是列表,分别存储随机漫步经过的每个点的x和y坐标

下面是代码

from random import choice

class RandomWalk():
 "一个生成随机漫步数据的表"

 def __init__(self, num_points = 5000):
 """初始化随机漫步的属性"""
 self.num_points = num_points

 # 所有随机漫步都起始于(0, 0)
 self.x_values = [0]
 self.y_values = [0]

 def fill_walk(self):
 """计算随机漫步包含的所有点"""

 # 不断漫步,直到列表达到指定的长度
 while len(self.x_values) < self.num_points:

  # 决定前进的方向以及沿这个方向前进的距离
  x_direction = choice([-1, 1])
  x_distance = choice([0, 1, 2, 3, 4])
  x_step = x_distance * x_direction 

  y_direction = choice([-1, 1])
  y_distance = choice([0, 1, 2, 3, 4])
  y_step = y_distance * y_direction

  # 拒绝原地踏步
  if x_step == 0 and y_step == 0:
  continue

  # 计算下一个点的x和y值
  next_x = self.x_values[-1] + x_step
  next_y = self.y_values[-1] + y_step

  self.x_values.append(next_x)
  self.y_values.append(next_y)
from random_walk import RandomWalk

# 不断的模拟随机漫步
while True:
 # 创建一个RandomWalk实例,将其包含的点绘制出来
 rw = RandomWalk()
 rw.fill_walk()

 point_numbers = list(range(rw.num_points))
 plt.scatter(rw.x_values, rw.y_values, c = point_numbers, cmap = plt.cm.Blues,
 edgecolor = 'none', s = 5)

 # 突出起点和终点
 plt.scatter(0, 0, c='green', edgecolors = 'none', s = 100)
 plt.scatter(rw.x_values[1], rw.y_values[-1], c = 'red', edgecolors = 'none', s = 100)

 # 隐藏坐标轴
 # plt.axes().get_xaxis().set_visible(False)
 # plt.axes().get_yaxis().set_visible(False)

 plt.show()

 keep_running = input("Make another walk? (y/n): ")
 if keep_running.lower().startswith('n'):
 break

这是没有颜色渐变和绘制起始和结束点颜色和大小的图片

这个是给出代码的运行情况,绿色为起始点,红色为终止点,越靠近终止点蓝色越深。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python散点图实例之随机漫步

    随机漫步是这样行走得到的途径:每次行走都是完全随机的,没有明确的方向,结果是由一系列随机决策决定的. random_walk.py #random_walk.py from random import choice # -*- coding: utf-8 -*- class RandomWalk(): #一个生成随机漫步数据的类 def __init__(self,num_points=5000): self.num_points=num_points self.x_values=[0] sel

  • python实现随机漫步方法和原理

    我们通过模拟随机漫步可以说明如何运用数组运算.通过内置的random模块以纯Python的方式实现1000步的随机漫步 根据前100个随机漫步值生成的折线图, plt.plot(walk[:100]) 随机漫步中各步的累计和,可以用一个数组运算来实现.因此,我用np.random模块一次性随机产生1000个"掷硬币"结果(即两个数中任选一个),将其分别设置为1或-1,然后计算累计和 我们就可以沿着漫步路径做一些统计工作了,比如求取最大值和最小值 假设我们想要知道本次随机漫步需要多久才能

  • python3.5绘制随机漫步图

    本文实例为大家分享了python3.5绘制随机漫步图的具体代码,供大家参考,具体内容如下 代码中我们定义两个模型,一个是RandomWalk.py模型,用于随机的选择前进方向.此模型中的RandomWalk类包含两个方法,一个是__init__(),一个是fill_walk(),后者是计算随机漫步的所有点.另外一个是rw_visual.py模型,用于绘制随机漫步图. 代码如下: RandomWalk.py from random import choice class RandomWalk():

  • python使用matplotlib库生成随机漫步图

    本教程使用python来生成随机漫步数据,再使用matplotlib将数据呈现出来 开发环境 操作系统: Windows10 IDE: Pycharm 2017.1.3 Python版本: Python3.6 Python第三方库:matplotlib 开始实战 1. 创建RandomWalk()类 为了模拟随机漫步,我们将创建一个名为RandomWalk的类, 它随机地选择方向. from random import choice class RandomWalk(): ""&quo

  • Python3随机漫步生成数据并绘制

    本文为大家分享了Python3随机漫步生成数据并绘制的具体代码,供大家参考,具体内容如下 random_walk.py from random import choice #生成随机漫步的数据类 class RandomWalk(): def __init__(self,num_points=5000): #初始化随机漫步的属性 self.numpoints=num_points #随机漫步的默认点数 self.x_values=[0] #所有的随机漫步都始于(0.0) self.y_value

  • Python实现随机漫步功能

    随机漫步生成是无规则的,是系统自行选择的结果.根据设定的规则自定生成,上下左右的方位,每次所经过的方向路径. 首先,创建一个RandomWalk()类和fill_walk()函数 random_walk.py from random import choice class Randomwalk (): '''一个生成随机数漫步的类''' def __init__(self,num_point=5000): '''初始化随机漫步的属性''' self.num_point = num_point #

  • python实现随机漫步算法

    本文实例为大家分享了python实现随机漫步的具体代码,供大家参考,具体内容如下 编写randomwalk类 from random import choice class randomwalk(): def __init__(self,num_points=5000): self.num_points=num_points self.x_values=[0] self.y_values=[0] def fill_walk(self): while len(self.x_values)<self

  • Python使用matplotlib绘制随机漫步图

    本文我们来做一个简单的随机漫步数据图,进一步了解matplotlib的使用, 使用Python生成随机漫步数据,再使用matplotlib绘制出来, 随机漫步是这样行走得到的路径: 每次行走都完全是随机的,没有明确的方向,结果是由一系列随机决策决定的. 创建一个RandomWalk雷,随机的选择前进的方向,一共有三个属性,一个是存储随机漫步次数的变量,其他两个是列表,分别存储随机漫步经过的每个点的x和y坐标 下面是代码 from random import choice class Random

  • Python调用Matplotlib绘制振动图、箱型图和提琴图

    目录 Matplotlib介绍 振动图 箱型图 提琴图 Matplotlib介绍 Matplotlib 是一款用于数据可视化的 Python 软件包,支持跨平台运行,它能够根据 NumPy  ndarray 数组来绘制 2D 图像,它使用简单.代码清晰易懂,深受广大技术爱好者喜爱. NumPy 是 Python 科学计算的软件包,ndarray 则是 NumPy 提供的一种数组结构. Matplotlib 由 John D. Hunter 在 2002 年开始编写, 2003 年 Matplot

  • Python利用matplotlib绘制圆环图(环形图)的实战案例

    目录 一.概念介绍 二.数据展示 三.图像绘制 四.参数解释 (1) wedgeprops是我们绘图时的参数字典. (2) startangle是第一个数据起画点. (3) plt.text (4) 可以绘制如示例图一样的colorbar,或者legend吗? 总结 一.概念介绍 圆环图(Donut Chart),又称为环形图,甜甜圈图.它从饼图变形而来,单环的作用上与饼图相似,用于展示定性数据中小类占大类的比例关系. Q: 那既然都有饼图了,为什么还要圆环图呢? ① 从空间利用效果上,饼图的t

  • python使用matplotlib绘制雷达图

    本文实例为大家分享了python使用matplotlib绘制雷达图的具体代码,供大家参考,具体内容如下 示例代码: # encoding: utf-8 import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['KaiTi'] # 显示中文 labels = np.array([u'总场次', u'吃鸡数', u'前十数',u'总击杀']) #

  • python使用matplotlib绘制折线图的示例代码

    示例代码如下: #!/usr/bin/python #-*- coding: utf-8 -*- import matplotlib.pyplot as plt # figsize - 图像尺寸(figsize=(10,10)) # facecolor - 背景色(facecolor="blue") # dpi - 分辨率(dpi=72) fig = plt.figure(figsize=(10,10),facecolor="blue") #figsize默认为4,

  • Python利用matplotlib绘制折线图的新手教程

    前言 matplotlib是Python中的一个第三方库.主要用于开发2D图表,以渐进式.交互式的方式实现数据可视化,可以更直观的呈现数据,使数据更具说服力. 一.安装matplotlib pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple 二.matplotlib图像简介 matplotlib的图像分为三层,容器层.辅助显示层和图像层. 1. 容器层主要由Canvas.Figure.Axes组成. Canvas位

  • 利用Python matplotlib绘制风能玫瑰图

    概述 在之前的风资源分析文章中,有提到过用widrose包来进行玫瑰图的绘制,目前的可视化绘图包有很多,但是最基础和底层的,本人认为还是matplotlib,有时候为了画1-2个图就去安装一个包,好麻烦,我就是个安装软件的渣渣,所以,推己及人,我也研究了一下,matplotlib画玫瑰图的方法,废话不多说,开始咯~~~ 风能玫瑰图 玫瑰图是气象科学专业统计图表,用来统计某个地区一段时期内风向.风速发生频率,又分为"风向玫瑰图"和"风速玫瑰图".本文中的玫瑰图是将风速

  • python 用matplotlib绘制折线图详情

    目录 1. 折线图概述 1.1什么是折线图? 1.2折线图使用场景 1.3绘制折线图步骤 1.4案例展示 2. 折线2D属性 2.1linestyle:折线样式 2.2color:折线颜色 2.3marker:坐标值标记 2.4fillstyle:标记填充方法 2.5linewidth(lw): 直线宽度 3. 坐标管理 3.1坐标轴名字设置 3.2坐标轴刻度设置 3.3坐标轴位置设置 3.4指定坐标值标注 4. 多条折线展示图 5. 图列管理 复习回顾: 众所周知,matplotlib 是一款

随机推荐