python3实现单目标粒子群算法

本文实例为大家分享了python3单目标粒子群算法的具体代码,供大家参考,具体内容如下

关于PSO的基本知识......就说一下算法流程

1) 初始化粒子群;

随机设置各粒子的位置和速度,默认粒子的初始位置为粒子最优位置,并根据所有粒子最优位置,选取群体最优位置。

2) 判断是否达到迭代次数;

若没有达到,则跳转到步骤3)。否则,直接输出结果。

3) 更新所有粒子的位置和速度;

4) 计算各粒子的适应度值。

将粒子当前位置的适应度值与粒子最优位置的适应度值进行比较,决定是否更新粒子最优位置;将所有粒子最优位置的适应度值与群体最优位置的适应度值进行比较,决定是否更新群体最优位置。然后,跳转到步骤2)。

直接扔代码......(PS:1.参数动态调节;2.例子是二维的)

首先,是一些准备工作...

# Import libs
import numpy as np
import random as rd
import matplotlib.pyplot as plt

# Constant definition
MIN_POS = [-5, -5]         # Minimum position of the particle
MAX_POS = [5, 5]          # Maximum position of the particle
MIN_SPD = [-0.5, -0.5]        # Minimum speed of the particle
MAX_SPD = [1, 1]          # Maximum speed of the particle
C1_MIN = 0
C1_MAX = 1.5
C2_MIN = 0
C2_MAX = 1.5
W_MAX = 1.4
W_MIN = 0

然后是PSO类

# Class definition
class PSO():
 """
  PSO class
 """

 def __init__(self,iters=100,pcount=50,pdim=2,mode='min'):
  """
   PSO initialization
   ------------------
  """

  self.w = None         # Inertia factor
  self.c1 = None        # Learning factor
  self.c2 = None        # Learning factor

  self.iters = iters       # Number of iterations
  self.pcount = pcount       # Number of particles
  self.pdim = pdim        # Particle dimension
  self.gbpos = np.array([0.0]*pdim)    # Group optimal position

  self.mode = mode        # The mode of PSO

  self.cur_pos = np.zeros((pcount, pdim))  # Current position of the particle
  self.cur_spd = np.zeros((pcount, pdim))  # Current speed of the particle
  self.bpos = np.zeros((pcount, pdim))   # The optimal position of the particle

  self.trace = []        # Record the function value of the optimal solution

 def init_particles(self):
  """
   init_particles function
   -----------------------
  """

  # Generating particle swarm
  for i in range(self.pcount):
   for j in range(self.pdim):
    self.cur_pos[i,j] = rd.uniform(MIN_POS[j], MAX_POS[j])
    self.cur_spd[i,j] = rd.uniform(MIN_SPD[j], MAX_SPD[j])
    self.bpos[i,j] = self.cur_pos[i,j]

  # Initial group optimal position
  for i in range(self.pcount):
   if self.mode == 'min':
    if self.fitness(self.cur_pos[i]) < self.fitness(self.gbpos):
     gbpos = self.cur_pos[i]
   elif self.mode == 'max':
    if self.fitness(self.cur_pos[i]) > self.fitness(self.gbpos):
     gbpos = self.cur_pos[i]

 def fitness(self, x):
  """
   fitness function
   ----------------
   Parameter:
    x :
  """

  # Objective function
  fitval = 5*np.cos(x[0]*x[1])+x[0]*x[1]+x[1]**3 # min
  # Retyrn value
  return fitval

 def adaptive(self, t, p, c1, c2, w):
  """
  """

  #w = 0.95 #0.9-1.2
  if t == 0:
   c1 = 0
   c2 = 0
   w = 0.95
  else:
   if self.mode == 'min':
    # c1
    if self.fitness(self.cur_pos[p]) > self.fitness(self.bpos[p]):
     c1 = C1_MIN + (t/self.iters)*C1_MAX + np.random.uniform(0,0.1)
    elif self.fitness(self.cur_pos[p]) <= self.fitness(self.bpos[p]):
     c1 = c1
    # c2
    if self.fitness(self.bpos[p]) > self.fitness(self.gbpos):
     c2 = C2_MIN + (t/self.iters)*C2_MAX + np.random.uniform(0,0.1)
    elif self.fitness(self.bpos[p]) <= self.fitness(self.gbpos):
     c2 = c2
    # w
    #c1 = C1_MAX - (C1_MAX-C1_MIN)*(t/self.iters)
    #c2 = C2_MIN + (C2_MAX-C2_MIN)*(t/self.iters)
    w = W_MAX - (W_MAX-W_MIN)*(t/self.iters)
   elif self.mode == 'max':
    pass

  return c1, c2, w

 def update(self, t):
  """
   update function
   ---------------
    Note that :
     1. Update particle position
     2. Update particle speed
     3. Update particle optimal position
     4. Update group optimal position
  """

  # Part1 : Traverse the particle swarm
  for i in range(self.pcount):

   # Dynamic parameters
   self.c1, self.c2, self.w = self.adaptive(t,i,self.c1,self.c2,self.w)

   # Calculate the speed after particle iteration
   # Update particle speed
   self.cur_spd[i] = self.w*self.cur_spd[i] \
        +self.c1*rd.uniform(0,1)*(self.bpos[i]-self.cur_pos[i])\
        +self.c2*rd.uniform(0,1)*(self.gbpos - self.cur_pos[i])
   for n in range(self.pdim):
    if self.cur_spd[i,n] > MAX_SPD[n]:
     self.cur_spd[i,n] = MAX_SPD[n]
    elif self.cur_spd[i,n] < MIN_SPD[n]:
     self.cur_spd[i,n] = MIN_SPD[n]

   # Calculate the position after particle iteration
   # Update particle position
   self.cur_pos[i] = self.cur_pos[i] + self.cur_spd[i]
   for n in range(self.pdim):
    if self.cur_pos[i,n] > MAX_POS[n]:
     self.cur_pos[i,n] = MAX_POS[n]
    elif self.cur_pos[i,n] < MIN_POS[n]:
     self.cur_pos[i,n] = MIN_POS[n]

  # Part2 : Update particle optimal position
  for k in range(self.pcount):
   if self.mode == 'min':
    if self.fitness(self.cur_pos[k]) < self.fitness(self.bpos[k]):
     self.bpos[k] = self.cur_pos[k]
   elif self.mode == 'max':
    if self.fitness(self.cur_pos[k]) > self.fitness(self.bpos[k]):
     self.bpos[k] = self.cur_pos[k]

  # Part3 : Update group optimal position
  for k in range(self.pcount):
   if self.mode == 'min':
    if self.fitness(self.bpos[k]) < self.fitness(self.gbpos):
     self.gbpos = self.bpos[k]
   elif self.mode == 'max':
    if self.fitness(self.bpos[k]) > self.fitness(self.gbpos):
     self.gbpos = self.bpos[k]

 def run(self):
  """
   run function
   -------------
  """

  # Initialize the particle swarm
  self.init_particles()

  # Iteration
  for t in range(self.iters):
   # Update all particle information
   self.update(t)
   #
   self.trace.append(self.fitness(self.gbpos))

然后是main...

def main():
 """
  main function
 """

 for i in range(1):

  pso = PSO(iters=100,pcount=50,pdim=2, mode='min')
  pso.run()

  #
  print('='*40)
  print('= Optimal solution:')
  print('= x=', pso.gbpos[0])
  print('= y=', pso.gbpos[1])
  print('= Function value:')
  print('= f(x,y)=', pso.fitness(pso.gbpos))
  #print(pso.w)
  print('='*40)

  #
  plt.plot(pso.trace, 'r')
  title = 'MIN: ' + str(pso.fitness(pso.gbpos))
  plt.title(title)
  plt.xlabel("Number of iterations")
  plt.ylabel("Function values")
  plt.show()
 #
 input('= Press any key to exit...')
 print('='*40)
 exit() 

if __name__ == "__main__":

 main()

最后是计算结果,完美结束!!!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python编程实现粒子群算法(PSO)详解

    1 原理 粒子群算法是群智能一种,是基于对鸟群觅食行为的研究和模拟而来的.假设在鸟群觅食范围,只在一个地方有食物,所有鸟儿看不到食物(不知道食物的具体位置),但是能闻到食物的味道(能知道食物距离自己位置).最好的策略就是结合自己的经验在距离鸟群中距离食物最近的区域搜索. 利用粒子群算法解决实际问题本质上就是利用粒子群算法求解函数的最值.因此需要事先把实际问题抽象为一个数学函数,称之为适应度函数.在粒子群算法中,每只鸟都可以看成是问题的一个解,这里我们通常把鸟称之为粒子,每个粒子都拥有: 位置,可

  • python3实现单目标粒子群算法

    本文实例为大家分享了python3单目标粒子群算法的具体代码,供大家参考,具体内容如下 关于PSO的基本知识......就说一下算法流程 1) 初始化粒子群: 随机设置各粒子的位置和速度,默认粒子的初始位置为粒子最优位置,并根据所有粒子最优位置,选取群体最优位置. 2) 判断是否达到迭代次数: 若没有达到,则跳转到步骤3).否则,直接输出结果. 3) 更新所有粒子的位置和速度: 4) 计算各粒子的适应度值. 将粒子当前位置的适应度值与粒子最优位置的适应度值进行比较,决定是否更新粒子最优位置:将所

  • Python代码实现粒子群算法图文详解

    目录 1.引言 2.算法的具体描述: 2.1原理 2.2标准粒子群算法流程 3.代码案例 3.1问题 3.2绘图 3.3计算适应度 3.4更新速度 3.5更新粒子位置 3.6主要算法过程 结果 总结 1.引言 粒子群优化算法起源于对鸟群觅食活动的分析.鸟群在觅食的时候通常会毫无征兆的聚拢,分散,以及改变飞行的轨迹,但是在不同个体之间会十分默契的保持距离.所以粒子群优化算法模拟鸟类觅食的过程,将待求解问题的搜索空间看作是鸟类飞行的空间,将每只鸟抽象成一个没有质量和大小的粒子,用这个粒子来表示待求解

  • python实现粒子群算法

    粒子群算法 粒子群算法源于复杂适应系统(Complex Adaptive System,CAS).CAS理论于1994年正式提出,CAS中的成员称为主体.比如研究鸟群系统,每个鸟在这个系统中就称为主体.主体有适应性,它能够与环境及其他的主体进行交流,并且根据交流的过程"学习"或"积累经验"改变自身结构与行为.整个系统的演变或进化包括:新层次的产生(小鸟的出生):分化和多样性的出现(鸟群中的鸟分成许多小的群):新的主题的出现(鸟寻找食物过程中,不断发现新的食物). P

  • Python实现粒子群算法的示例

    粒子群算法是一种基于鸟类觅食开发出来的优化算法,它是从随机解出发,通过迭代寻找最优解,通过适应度来评价解的品质. PSO算法的搜索性能取决于其全局探索和局部细化的平衡,这在很大程度上依赖于算法的控制参数,包括粒子群初始化.惯性因子w.最大飞翔速度和加速常数与等. PSO算法具有以下优点: 不依赖于问题信息,采用实数求解,算法通用性强. 需要调整的参数少,原理简单,容易实现,这是PSO算法的最大优点. 协同搜索,同时利用个体局部信息和群体全局信息指导搜索. 收敛速度快, 算法对计算机内存和CPU要

  • Python实现鸡群算法的示例代码

    目录 算法简介 Python实现鸡和鸡群 鸡群更新 优化迭代 测试 算法简介 鸡群算法,缩写为CSO(Chicken Swarm Optimization),尽管具备所谓仿生学的背景,但实质上是粒子群算法的一个变体. 简单来说,粒子群就是一群粒子,每个粒子都有自己的位置和速度,而且每个粒子都要受到最佳粒子的吸引,除了这两条规则之外,粒子之间完全平等,彼此之间除了位置和速度之外,完全相等. 当然,粒子群算法本身也是有仿生学背景的,据说灵感来自于鸟群觅食,这个当然不重要,无非是一群平等的粒子变成了一

  • python实现单目标、多目标、多尺度、自定义特征的KCF跟踪算法(实例代码)

    单目标跟踪: 直接调用opencv中封装的tracker即可. #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Jan 5 17:50:47 2020 第四章 kcf跟踪 @author: youxinlin """ import cv2 from items import MessageItem import time import numpy as np ''

  • Python Opencv实现单目标检测的示例代码

    一 简介 目标检测即为在图像中找到自己感兴趣的部分,将其分割出来进行下一步操作,可避免背景的干扰.以下介绍几种基于opencv的单目标检测算法,算法总体思想先尽量将目标区域的像素值全置为1,背景区域全置为0,然后通过其它方法找到目标的外接矩形并分割,在此选择一张前景和背景相差较大的图片作为示例. 环境:python3.7 opencv4.4.0 二 背景前景分离 1 灰度+二值+形态学 轮廓特征和联通组件 根据图像前景和背景的差异进行二值化,例如有明显颜色差异的转换到HSV色彩空间进行分割. 1

  • Python实现蚁群算法

    目录 1.引言 2蚁群算法理论 3算法理论图解 4人工蚁群优化过程 5 基本蚁群算法及其流程 5.1  蚁群算法公式 5.2蚁群算法程序概括 5.3流程图 6案例实现 6.1案例1 6.2Python实现 6.3结果 6.4案例2 6.5Python实现 6.6结果 1.引言 在自然界中各种生物群体显现出来的智能近几十年来得到了学者们的广泛关注,学者们通过对简单生物体的群体行为进行模拟,进而提出了群智能算法.其中,模拟蚁群觅食过程的蚁群优化算法(Ant Colony Optimization,

  • 基于OpenCV4.2实现单目标跟踪

    目录 1.什么是目标跟踪 2.跟踪与检测 3.使用OpenCV4实现对象跟踪 3.1使用OpenCV4实现对象跟踪C++代码 3.2使用OpenCV4实现对象跟踪Python代码 4.跟踪算法解析 4.1BOOSTINGTracker 4.2MILTracker 4.3KCFTracker 4.4TLDTracker 4.5MEDIANFLOWTracker 4.6GOTURNtracker 4.7MOSSEtracker 4.8CSRTtracker 在本教程中,我们将学习使用OpenCV跟踪

随机推荐