PyTorch之nn.ReLU与F.ReLU的区别介绍

我就废话不多说了,大家还是直接看代码吧~

import torch.nn as nn
import torch.nn.functional as F
import torch.nn as nn

class AlexNet_1(nn.Module):

  def __init__(self, num_classes=n):
    super(AlexNet, self).__init__()
    self.features = nn.Sequential(
      nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1),
      nn.BatchNorm2d(64),
      nn.ReLU(inplace=True),
     )

  def forward(self, x):
    x = self.features(x)

class AlexNet_2(nn.Module):

  def __init__(self, num_classes=n):
    super(AlexNet, self).__init__()
    self.features = nn.Sequential(
      nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1),
      nn.BatchNorm2d(64),
     )

  def forward(self, x):
    x = self.features(x)
    x = F.ReLU(x)

在如上网络中,AlexNet_1与AlexNet_2实现的结果是一致的,但是可以看到将ReLU层添加到网络有两种不同的实现,即nn.ReLU和F.ReLU两种实现方法。

其中nn.ReLU作为一个层结构,必须添加到nn.Module容器中才能使用,而F.ReLU则作为一个函数调用,看上去作为一个函数调用更方便更简洁。具体使用哪种方式,取决于编程风格。

在PyTorch中,nn.X都有对应的函数版本F.X,但是并不是所有的F.X均可以用于forward或其它代码段中,因为当网络模型训练完毕时,在存储model时,在forward中的F.X函数中的参数是无法保存的。

也就是说,在forward中,使用的F.X函数一般均没有状态参数,比如F.ReLU,F.avg_pool2d等,均没有参数,它们可以用在任何代码片段中。

补充知识:pytorch小知识点——in-place operation

一、什么是in-place

在pytorch的很多函数中经常看到in-place选项,具体是什么意思一直一知半解。这次专门来学习一下,in-place operation在pytorch中是指改变一个tensor的值的时候,不经过复制操作,而是直接在原来的内存上改变它的值。可以把它称为原地操作符。

在pytorch中经常加后缀“_”来代表原地in-place operation,比如说.add_() 或者.scatter()。我们可以将in_place操作简单的理解类似于python中的"+=","-="等操作。

举个例子,下面是正常的加操作,执行结束后x的值没有变化

import torch
x = torch.rand(2)
x
Out[3]: tensor([0.3486, 0.2924])  #<-----这是x初始值

y = torch.rand(2)
y
Out[5]: tensor([0.6301, 0.0101])  #<-----这是y初始值
x.add(y)
Out[6]: tensor([0.9788, 0.3026])   #<-----这是x+y的结果
x
Out[7]: tensor([0.3486, 0.2924])  #<-----这是执行操作之后x的值
y
Out[8]: tensor([0.6301, 0.0101])   #<-----这是执行操作之后y的值

我们可以发现,在正常操作之后原操作数的值不会发生变化。

下面我们来看看in_place操作

import torch
x = torch.rand(2)
x
Out[3]: tensor([0.3486, 0.2924])  #<-----这是x初始值
y = torch.rand(2)
y
Out[5]: tensor([0.6301, 0.0101])  #<-----这是y初始值
x.add_(y)
Out[9]: tensor([0.9788, 0.3026])  #<-----这是x+y结果
x
Out[10]: tensor([0.9788, 0.3026]) #<-----这是操作后x的值
y
Out[11]: tensor([0.6301, 0.0101])  #<-----这是操作后y的值

通过对比可以发现,in_place操作之后,原操作数等于表达式计算结果。也就是说将计算结果赋给了原操作数。

二、不能使用in-place的情况

对于 requires_grad=True 的 叶子张量(leaf tensor) 不能使用 inplace operation

对于在 求梯度阶段需要用到的张量 不能使用 inplace operation

以上这篇PyTorch之nn.ReLU与F.ReLU的区别介绍就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch方法测试——激活函数(ReLU)详解

    测试代码: import torch import torch.nn as nn #inplace为True,将会改变输入的数据 ,否则不会改变原输入,只会产生新的输出 m = nn.ReLU(inplace=True) input = torch.randn(7) print("输入处理前图片:") print(input) output = m(input) print("ReLU输出:") print(output) print("输出的尺度:&qu

  • PyTorch中常用的激活函数的方法示例

    神经网络只是由两个或多个线性网络层叠加,并不能学到新的东西,简单地堆叠网络层,不经过非线性激活函数激活,学到的仍然是线性关系. 但是加入激活函数可以学到非线性的关系,就具有更强的能力去进行特征提取. 构造数据 import torch import torch.nn.functional as F from torch.autograd import Variable import matplotlib.pyplot as plt x = torch.linspace(-5, 5, 200) #

  • pytorch构建网络模型的4种方法

    利用pytorch来构建网络模型有很多种方法,以下简单列出其中的四种. 假设构建一个网络模型如下: 卷积层-->Relu层-->池化层-->全连接层-->Relu层-->全连接层 首先导入几种方法用到的包: import torch import torch.nn.functional as F from collections import OrderedDict 第一种方法 # Method 1 --------------------------------------

  • 详解PyTorch批训练及优化器比较

    一.PyTorch批训练 1. 概述 PyTorch提供了一种将数据包装起来进行批训练的工具--DataLoader.使用的时候,只需要将我们的数据首先转换为torch的tensor形式,再转换成torch可以识别的Dataset格式,然后将Dataset放入DataLoader中就可以啦. import torch import torch.utils.data as Data torch.manual_seed(1) # 设定随机数种子 BATCH_SIZE = 5 x = torch.li

  • PyTorch之nn.ReLU与F.ReLU的区别介绍

    我就废话不多说了,大家还是直接看代码吧~ import torch.nn as nn import torch.nn.functional as F import torch.nn as nn class AlexNet_1(nn.Module): def __init__(self, num_classes=n): super(AlexNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_siz

  • 浅析PyTorch中nn.Module的使用

    torch.nn.Modules 相当于是对网络某种层的封装,包括网络结构以及网络参数和一些操作 torch.nn.Module 是所有神经网络单元的基类 查看源码 初始化部分: def __init__(self): self._backend = thnn_backend self._parameters = OrderedDict() self._buffers = OrderedDict() self._backward_hooks = OrderedDict() self._forwa

  • 对Pytorch中nn.ModuleList 和 nn.Sequential详解

    简而言之就是,nn.Sequential类似于Keras中的贯序模型,它是Module的子类,在构建数个网络层之后会自动调用forward()方法,从而有网络模型生成.而nn.ModuleList仅仅类似于pytho中的list类型,只是将一系列层装入列表,并没有实现forward()方法,因此也不会有网络模型产生的副作用. 需要注意的是,nn.ModuleList接受的必须是subModule类型,例如: nn.ModuleList( [nn.ModuleList([Conv(inp_dim

  • pytorch中nn.Conv1d的用法详解

    先粘贴一段official guide:nn.conv1d官方 我一开始被in_channels.out_channels卡住了很久,结果发现就和conv2d是一毛一样的.话不多说,先粘代码(菜鸡的自我修养) class CNN1d(nn.Module): def __init__(self): super(CNN1d,self).__init__() self.layer1 = nn.Sequential( nn.Conv1d(1,100,2), nn.BatchNorm1d(100), nn

  • 浅谈pytorch中torch.max和F.softmax函数的维度解释

    在利用torch.max函数和F.Ssoftmax函数时,对应该设置什么维度,总是有点懵,遂总结一下: 首先看看二维tensor的函数的例子: import torch import torch.nn.functional as F input = torch.randn(3,4) print(input) tensor([[-0.5526, -0.0194, 2.1469, -0.2567], [-0.3337, -0.9229, 0.0376, -0.0801], [ 1.4721, 0.1

  • Pytorch损失函数nn.NLLLoss2d()用法说明

    最近做显著星检测用到了NLL损失函数 对于NLL函数,需要自己计算log和softmax的概率值,然后从才能作为输入 输入 [batch_size, channel , h, w] 目标 [batch_size, h, w] 输入的目标矩阵,每个像素必须是类型.举个例子.第一个像素是0,代表着类别属于输入的第1个通道:第二个像素是0,代表着类别属于输入的第0个通道,以此类推. x = Variable(torch.Tensor([[[1, 2, 1], [2, 2, 1], [0, 1, 1]]

  • pytorch 实现计算 kl散度 F.kl_div()

    先附上官方文档说明:https://pytorch.org/docs/stable/nn.functional.html torch.nn.functional.kl_div(input, target, size_average=None, reduce=None, reduction='mean') Parameters input – Tensor of arbitrary shape target – Tensor of the same shape as input size_aver

  • Pytorch上下采样函数之F.interpolate数组采样操作详解

    目录 什么是上采样 F.interpolate——数组采样操作 输入: 注意: 补充: 代码案例 一般用法 size与scale_factor的区别:输入序列时 size与scale_factor的区别:输入整数时 align_corners=True与False的区别 扩展: 总结 什么是上采样 上采样,在深度学习框架中,可以简单的理解为任何可以让你的图像变成更高分辨率的技术. 最简单的方式是重采样和插值:将输入图片input image进行rescale到一个想要的尺寸,而且计算每个点的像素

  • pytorch torch.nn.AdaptiveAvgPool2d()自适应平均池化函数详解

    如题:只需要给定输出特征图的大小就好,其中通道数前后不发生变化.具体如下: AdaptiveAvgPool2d CLASStorch.nn.AdaptiveAvgPool2d(output_size)[SOURCE] Applies a 2D adaptive average pooling over an input signal composed of several input planes. The output is of size H x W, for any input size.

  • 用pytorch的nn.Module构造简单全链接层实例

    python版本3.7,用的是虚拟环境安装的pytorch,这样随便折腾,不怕影响其他的python框架 1.先定义一个类Linear,继承nn.Module import torch as t from torch import nn from torch.autograd import Variable as V class Linear(nn.Module): '''因为Variable自动求导,所以不需要实现backward()''' def __init__(self, in_feat

随机推荐