Python实例详解递归算法

递归是一种较为抽象的数学逻辑,可以简单的理解为「程序调用自身的算法」。

维基百科对递归的解释是:

递归(英语:Recursion),又译为递回,在数学与计算机科学中,是指在函数的定义中使用函数自身的方法。递归一词还较常用于描述以自相似方法重复事物的过程。

例如,当两面镜子相互之间近似平行时,镜中嵌套的图像是以无限递归的形式出现的。也可以理解为自我复制的过程。

"递"是传递的意思,"归"是归还的意思,先把一个方法一层层传递下去,然后传递到最后一层再把结果归还回来。

比方说我排队做核酸检测,前面有100个人,我想问下医务人员几点下班,于是问了我前面那兄弟,他又问了他前面的人,一个个传递下去,最终传递到了医务人员那里,回话说下午六点下班。这句话又往回传,最终到了我这里,我知道了医务人员六点下班。

这个过程就是一个递归过程,如果说"传话"本身是一种方法,那这整个传话过程就是在调用自身方法,最终获得了结果。

这和循环不一样,循环相当于给所有人都所有人都戴了耳机,然后有"中介"挨个去问你知道医务人员几点下班吗,等问到医务人员的时候,得到答案,“中介”告诉我六点下班。

实质上,递归就是把一个大问题不断拆解,像剥洋葱一样,最终拆解到最小层面,会返回解题结果。

用Python举一个最简单的递归函数例子,讲一讲什么是递归的应用。

我们经常会看到函数会调用自身来实现循环操作,比如求阶乘的函数。

整数n的阶乘即n*(n-1)*(n-2)*...*3*2*1

如下面5行Python代码,就能实现阶乘的计算

def fact(n):
    ''' n表示要求的数的阶乘 '''
    if n==1:
        return n 
    n = n*fact(n-1)
    return n  

print(factorial(5))

输出:

120

很多人可能困惑这里面的计算逻辑,为什么fact函数中调用了自身,最终能得到结果。

我们可以按照数学逻辑进行推演:

整数n的阶乘是:fact(n) = n*(n-1)*...*3*2*1

整数n-1的阶乘是:fact(n-1) = (n-1)*(n-2)*...*3*2*1

所以可以推断 fact(n) = n*fact(n-1)

这里是不是一种 fact方法可以为每个数所调用,最终调用到了n=1的时候,就返回结果n的阶乘。

大家看上图,递归函数会一层层往下调用,最终到n=1的时候,往上返回结果。

这就是递归的全过程,如果我们给递归下一个准确的定义,可以概括为以下3点:

1、至少有一个明确的递归结束条件;

2、给出递归终止时的处理办法;

3、每次进入更深一层递归时,问题规模(计算量)相比上次递归都应有所减少

以上面代码为例:

def factorial(n):
    ''' n表示要求的数的阶乘 '''
    if n==1: # 1、明确递归终止条件;
        return n # 2、递归终止时的处理办法
    n = n*factorial(n-1) # 递去
    return n  # 归来

除了常见的阶乘案例,还有斐波那契数列,也是递归的经典用法。

斐波那契数列:1,1,2,3,5,8,13,21,34,55,89...

这个数列从第3项开始,每一项都等于前两项之和。

它以如下被以递推的方法定义:F(0)=0,F(1)=1,F(n)=F(n - 1)+F(n - 2)(n≥ 2,n∈ N*)

在Python中,我们可以使用递归函数的方式去实现斐波那契数列:

# 1,1,2,3,5,8,13,21,34,55,试判断数列第12个数是哪个?
def fab(n):
    ''' n为斐波那契数列 '''
    if n <= 2:
        v = 1
        return v 
    v = fab(n-1)+fab(n-2) 
    return v  

print(fab(12)) 

使用数学方法进行推导:

  • fab(0) = 0(初始值)
  • fab(1) = 1(初始值)
  • 对所有大于1的整数n:fab(n) = fab(n-1)+ fab(n-2)(递归定义)

其实以上两个递归的案例都可以用数学归纳法来解释,就是高中数学的知识。

一般地,证明一个与自然数n有关的命题P(n),有如下步骤:

(1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况;

(2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。

综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。

除了数学的解释,之前也看到有人对递归更加形象的解释:

1、我们已经完成了吗?如果完成了,返回结果。如果没有这样的终止条件,递归将会永远地继续下去。

2、如果没有,则简化问题,解决较容易的问题,并将结果组装成原始问题的解决办法。然后返回该解决办法。

哈哈,到这里大家是不是对递归有了一个更加深刻的认识。

如果还不清楚,没关系,这里还有更多的递归案例,用Python来实现,可以说非常简洁。

「最大公因数:」

def gcd(m, n):
    if n == 0:
        return m
    else:
        return gcd(n, m%n)

「从 1 到 n 的数字之和:」

def sumnums(n):
    if n == 1:
        return 1
    return n + sumnums(n - 1)

print(sumnums(3))

「字符串倒序:」

def reverse(string):
    if len(string) == 0:
        return string
    else:
        return reverse(string[1:]) + string[0]

reverseme = '我是帅哥'
print(reverse(reverseme))

「汉诺塔问题:」

def towerOfHanoi(numrings, from_pole, to_pole, aux_pole):
    if numrings == 1:
        print('Move ring 1 from', from_pole, 'pole to', to_pole, 'pole')
        return
    towerOfHanoi(numrings - 1, from_pole, aux_pole, to_pole)
    print('Move ring', numrings, 'from', from_pole, 'pole to', to_pole, 'pole')
    towerOfHanoi(numrings - 1, aux_pole, to_pole, from_pole)

numrings = 2
towerOfHanoi(numrings, 'Left', 'Right', 'Middle')

「二分法找有序列表指定值:」

data = [1,3,6,13,56,123,345,1024,3223,6688]
def dichotomy(min,max,d,n):
    '''
    min表示有序列表头部索引
    max表示有序列表尾部索引
    d表示有序列表
    n表示需要寻找的元素
    '''
    mid = (min+max)//2
    if mid==0:
        return 'None'
    elif d[mid]<n:
        print('向右侧找!')
        return dichotomy(mid,max,d,n)
    elif d[mid]>n:
        print('向左侧找!')
        return dichotomy(min,mid,d,n)
    else:
        print('找到了%s'%d[mid])
        return 
res = dichotomy(0,len(data),data,222)
print(res)

有位大佬说过:To Iterate is Human, to Recurse, Divine.

中文译为:人理解迭代,神理解递归。

可见递归是非常神奇的算法,它的神奇之处在于它允许用户用有限的语句描述无限的对象。

当然人无完人,递归也是有缺点的,它一般效率较低,且会导致调用栈溢出。

因为递归不断调用自身函数,且产生大量变量,而栈空间的容量是有限的,循环太多就会效率低下,甚至导致调用栈溢出

以上就是Python实例详解递归算法的详细内容,更多关于Python递归算法的资料请关注我们其它相关文章!

(0)

相关推荐

  • python装饰器与递归算法详解

    1.python装饰器 刚刚接触python的装饰器,简直懵逼了,直接不懂什么意思啊有木有,自己都忘了走了多少遍Debug,查了多少遍资料,猜有点点开始明白了.总结了一下解释得比较好的,通俗易懂的来说明一下: 小P闲来无事,随便翻看自己以前写的一些函数,忽然对一个最最最基础的函数起了兴趣: def sum1(): sum = 1 + 2 print(sum) sum1() 此时小P想看看这个函数执行用了多长时间,所以写了几句代码插进去了: import time def sum1(): star

  • Python基于递归算法实现的走迷宫问题

    本文实例讲述了Python基于递归算法实现的走迷宫问题.分享给大家供大家参考,具体如下: 什么是递归? 简单地理解就是函数调用自身的过程就称之为递归. 什么时候用到递归? 如果一个问题可以表示为更小规模的迭代运算,就可以使用递归算法. 迷宫问题:一个由0或1构成的二维数组中,假设1是可以移动到的点,0是不能移动到的点,如何从数组中间一个值为1的点出发,每一只能朝上下左右四个方向移动一个单位,当移动到二维数组的边缘,即可得到问题的解,类似的问题都可以称为迷宫问题. 在python中可以使用list

  • 浅谈Python 递归算法指归

    1. 递归概述 递归( recursion)是一种编程技巧,某些情况下,甚至是无可替代的技巧.递归可以大幅简化代码,看起来非常简洁,但递归设计却非常抽象,不容易掌握.通常,我们都是自上而下的思考问题, 递归则是自下而上的解决问题--这就是递归看起来不够直观的原因.那么,究竟什么是递归呢?让我们先从生活中找一个栗子. 我们都有在黑暗的放映厅里找座位的经验:问问前排的朋友坐的是第几排,加上一,就是自己当前所处位置的排号.如果前排的朋友不知道自己是第几排,他可以用同样的方法得到自己的排号,然后再告诉你

  • Python递归实现汉诺塔算法示例

    本文实例讲述了Python递归实现汉诺塔算法.分享给大家供大家参考,具体如下: 最近面试题,面试官让我5分钟实现汉诺塔算法(已然忘记汉诺塔是啥). 痛定思痛,回来查了一下汉诺塔的题目和算法.题干与实现如下: A基座有64个盘子,大在下小在上,每次移动一个盘子,每次都需要大在下小在上,全部移动到B基座,C基座为辅助基座. # -*- coding:utf-8 -*- # 汉诺塔回溯递归实现 # 假设参数中初始杆为a,借助杆为c,阶段终止杆为b # 第一步,a状态借助b移动到c # 第二步,a移动到

  • Python实例详解递归算法

    递归是一种较为抽象的数学逻辑,可以简单的理解为「程序调用自身的算法」. 维基百科对递归的解释是: 递归(英语:Recursion),又译为递回,在数学与计算机科学中,是指在函数的定义中使用函数自身的方法.递归一词还较常用于描述以自相似方法重复事物的过程. 例如,当两面镜子相互之间近似平行时,镜中嵌套的图像是以无限递归的形式出现的.也可以理解为自我复制的过程. "递"是传递的意思,"归"是归还的意思,先把一个方法一层层传递下去,然后传递到最后一层再把结果归还回来. 比

  • python之sqlalchemy创建表的实例详解

    python之sqlalchemy创建表的实例详解 通过sqlalchemy创建表需要三要素:引擎,基类,元素 from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column,Integer,String 引擎:也就是实体数据库连接 engine = create_engine('mysql+pymysql://go

  • python里使用正则表达式的组嵌套实例详解

    python里使用正则表达式的组嵌套实例详解 由于组本身是一个完整的正则表达式,所以可以将组嵌套在其他组中,以构建更复杂的表达式.下面的例子,就是进行组嵌套的例子: #python 3.6 #蔡军生 #http://blog.csdn.net/caimouse/article/details/51749579 # import re def test_patterns(text, patterns): """Given source text and a list of pa

  • Python 多线程实例详解

    Python 多线程实例详解 多线程通常是新开一个后台线程去处理比较耗时的操作,Python做后台线程处理也是很简单的,今天从官方文档中找到了一个Demo. 实例代码: import threading, zipfile class AsyncZip(threading.Thread): def __init__(self, infile, outfile): threading.Thread.__init__(self) self.infile = infile self.outfile =

  • Python 通过URL打开图片实例详解

    Python 通过URL打开图片实例详解 不论是用OpenCV还是PIL,skimage等库,在之前做图像处理的时候,几乎都是读取本地的图片.最近尝试爬虫爬取图片,在保存之前,我希望能先快速浏览一遍图片,然后有选择性的保存.这里就需要从url读取图片了.查了很多资料,发现有这么几种方法,这里做个记录. 本文用到的图片URL如下: img_src = 'http://wx2.sinaimg.cn/mw690/ac38503ely1fesz8m0ov6j20qo140dix.jpg' 1.用Open

  • Python命令启动Web服务器实例详解

    Python命令启动Web服务器实例详解 利用Python自带的包可以建立简单的web服务器.在DOS里cd到准备做服务器根目录的路径下,输入命令: python -m Web服务器模块 [端口号,默认8000] 例如: python -m SimpleHTTPServer 8080 然后就可以在浏览器中输入 http://localhost:端口号/路径 来访问服务器资源. 例如: http://localhost:8080/index.htm(当然index.htm文件得自己创建) 其他机器

  • python dict 字典 以及 赋值 引用的一些实例(详解)

    最近在做一个很大的数据库方面的东东,要用到根据数值来查找,于是想到了python中的字典,平时没用过dict这个东东 用的最多的还是 list 和 tuple (网上查 用法一大堆) 看了一下创建字典的方法: 方法1: dict = {'name': 'earth', 'port': 80} 方法2: fdict = dict((['x', 1], ['y', 2])) 方法3: ddict = {}.fromkeys(('x', 'y'), -1) 都实验了一下这些方法,发现不好用,做不出来自

  • python 二分查找和快速排序实例详解

    思想简单,细节颇多:本以为很简单的两个小程序,写起来发现bug频出,留此纪念. #usr/bin/env python def binary_search(lst,t): low=0 height=len(lst)-1 quicksort(lst,0,height) print lst while low<=height: mid = (low+height)/2 if lst[mid] == t: return lst[mid] elif lst[mid]>t: height=mid-1 e

  • python里使用正则的findall函数的实例详解

    python里使用正则的findall函数的实例详解 在前面学习了正则的search()函数,这个函数可以找到一个匹配的字符串返回,但是想找到所有匹配的字符串返回,怎么办呢?其实得使用findall()函数.如下例子: #python 3. 6 #蔡军生 #http://blog.csdn.net/caimouse/article/details/51749579 # import re text = 'abbaaabbbbaaaaa' pattern = 'ab' for match in r

  • Python 调用Java实例详解

    Python 调用Java实例详解 前言: Python 对服务器端编程不如Java 所以这方面可能要调用Java代码 前提: Linux 环境  1 安装 jpype1 安装后测试代码: from jpype import * startJVM(getDefaultJVMPath(), "-ea") java.lang.System.out.println("Hello World") shutdownJVM() 2 调用非jdk的jar包, test.jar 包

随机推荐