深入学习python的yield和generator

前言
没有用过的东西,没有深刻理解的东西很难说自己会,而且被别人一问必然破绽百出。虽然之前有接触过python协程的概念,但是只是走马观花,这两天的一次交谈中,别人问到了协程,顿时语塞,死活想不起来曾经看过的东西,之后突然想到了yield,但为时已晚,只能说概念不清,所以本篇先缕缕python的生成器和yield关键字。

什么是生成器
1、生成器是一个特殊的程序,可以被用作控制循环的迭代行为
2、生成器类似于返回值为数组的一个函数,这个函数可以接收参数,可以被调用,但是,不同于一般的函数会一次性返回包含了所有数值的数组,生成器一次只产生一个值,这样消耗的内粗数量大大减少,而且允许调用函数可以很快的开始处理前几个返回值。因此,生成器看起来像一个函数但是表现的却像一个迭代器。
python中的生成器
python提供了两种基本的方式。

1)、生成器函数:也是用def来定义,利用关键字yield一次返回一个结果,阻塞,重新开始
2)、生成器表达式:返回一个对象,这个对象只有在需要的时候才产生结果
下面详细讲解。

1、生成器函数
为什么叫生成器函数?因为他随着时间的推移生成了一个数值队列。一般的函数在执行完毕之后会返回一个值然后退出,但是生成器函数会自动挂起,然后重新拾起继续执行,他会利用yield关键字关起函数,给调用者返回一个值,同时保留了当前的足够多的状态,可以使函数继续执行。生成器和迭代协议是密切相关的,可迭代的对象都有一个__next()__成员方法,这个方法要么返回迭代的下一项,要么引起异常结束迭代。
为了支持迭代协议,拥有yield语句的函数被编译为生成器,这类函数被调用时返回一个生成器对象,返回的对象支持迭代接口,即成员方法__next()__继续从中断处执行执行。
看下面的例子:

# codes
def create_counter(n):
 print "create counter"
 while True:
  yield n
  print 'increment n'
  n += 1

cnt = create_counter(2)
print cnt
print next(cnt)
print next(cnt)

# output
<generator object create_counter at 0x0000000001D141B0>
create counter
2
increment n
3

分析一下这个例子:

  • 在create_counter函数中出现了关键字yield,预示着这个函数每次只产生一个结果值,这个函数返回一个生成器(通过第一行输出可以看出来),用来产生连续的n值
  • 在创造生成器实例的时候,只需要像普通函数一样调用就可以,但是这个调用却不会执行这个函数,这个可以通过输出看出来
  • next()函数将生成器对象作为自己的参数,在第一次调用的时候,他执行了create_counter()函数到yield语句,返回产生的值2
  • 我们重复的调用next()函数,每次他都会从上次被挂起的地方开始执行,直到再次遇到了yield关键字

为了更加深刻的理解,我们再举一个例子。

#coding
def cube(n):
 for i in range(n):
  yield i ** 3

for i in cube(5):
 print i

#output
0
1
8
27
64

所以从理解函数的角度出发我们可以将yield类比为return,但是功能确实完全不同,在for循环中,会自动遵循迭代规则,每次调用next()函数,所以上面的结果不难理解。

2、生成器表达式
生成器表达式来自于迭代和列表解析的组合,关于列表解析的概念和用法可以参见我之前的博客,生成器表达式和列表解析类似,但是他使用尖括号而不是方括号括起来的。如下代码:

>>> # 列表解析生成列表
>>> [ x ** 3 for x in range(5)]
[0, 1, 8, 27, 64]
>>>
>>> # 生成器表达式
>>> (x ** 3 for x in range(5))
<generator object <genexpr> at 0x000000000315F678>
>>> # 两者之间转换
>>> list(x ** 3 for x in range(5))
[0, 1, 8, 27, 64]

就操作而言,生成器表如果使用大量的next()函数会显得十分不方便,for循环会自动出发next函数,所以可以按下面方式使用:

>>> for n in (x ** 3 for x in range(5)):
 print('%s, %s' % (n, n * n))

0, 0
1, 1
8, 64
27, 729
64, 4096
>>>

两者比较
一个迭代既可以被写成生成器函数,也可以被协程生成器表达式,均支持自动和手动迭代。而且这些生成器只支持一个active迭代,也就是说生成器的迭代器就是生成器本身。

总结
想起了初中时候老师经常说的,眼观千遍,不如手动一遍。

(0)

相关推荐

  • Python使用迭代器捕获Generator返回值的方法

    本文实例讲述了Python使用迭代器捕获Generator返回值的方法.分享给大家供大家参考,具体如下: 用for循环调用generator时,发现拿不到generator的return语句的返回值.如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中: #!/usr/bin/env python # -*- coding: utf-8 -*- def fib(max): n, a, b = 0, 0, 1 while n < max:

  • python的迭代器与生成器实例详解

    本文以实例详解了python的迭代器与生成器,具体如下所示: 1. 迭代器概述:   迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退.   1.1 使用迭代器的优点   对于原生支持随机访问的数据结构(如tuple.list),迭代器和经典for循环的索引访问相比并无优势,反而丢失了索引值(可以使用内建函数enumerate()找回这个索引值).但对于无法随机访问的数据结构(比

  • Python生成器(Generator)详解

    通过列表生成式,我们可以直接创建一个列表.但是,受到内存限制,列表容量肯定是有限的.而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了. 所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间.在Python中,这种一边循环一边计算的机制,称为生成器(Generator). 简单生成器 要创建一个generator,有很

  • Python函数返回值实例分析

    本文实例讲述了Python的函数返回值用法.分享给大家供大家参考.具体分析如下: 最近学一些Python的基本用法,看到定义函数,发现似乎只能返回一个返回值,想想matlab里返回多个返回值多方便啊,网上查了查,看到有返回多个值的方法.   python 函数返回值有两种形式: 1 返回一个值. 2 返回多个值.   现看看返回一个值的吧. def firstvalue(a,b): c = a + b return c print firstvalue(1,2) #结果:3 再看看返回多个值的:

  • Python中的迭代器与生成器高级用法解析

    迭代器 迭代器是依附于迭代协议的对象--基本意味它有一个next方法(method),当调用时,返回序列中的下一个项目.当无项目可返回时,引发(raise)StopIteration异常. 迭代对象允许一次循环.它保留单次迭代的状态(位置),或从另一个角度讲,每次循环序列都需要一个迭代对象.这意味我们可以同时迭代同一个序列不只一次.将迭代逻辑和序列分离使我们有更多的迭代方式. 调用一个容器(container)的__iter__方法创建迭代对象是掌握迭代器最直接的方式.iter函数为我们节约一些

  • python生成器generator用法实例分析

    本文实例讲述了python生成器generator用法.分享给大家供大家参考.具体如下: 使用yield,可以让函数生成一个结果序列,而不仅仅是一个值 例如: def countdown(n): print "counting down" while n>0: yield n #生成一个n值 n -=1 >>> c = countdown(5) >>> c.next() counting down 5 >>> c.next()

  • python迭代器与生成器详解

    例子 老规矩,先上一个代码: def add(s, x): return s + x def gen(): for i in range(4): yield i base = gen() for n in [1, 10]: base = (add(i, n) for i in base) print list(base) 这个东西输出可以脑补一下, 结果是[20,21,22,23], 而不是[10, 11, 12, 13]. 当时纠结了半天,一直没搞懂,后来齐老师稍微指点了一下, 突然想明白了-

  • Python中用函数作为返回值和实现闭包的教程

    函数作为返回值 高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回. 我们来实现一个可变参数的求和.通常情况下,求和的函数是这样定义的: def calc_sum(*args): ax = 0 for n in args: ax = ax + n return ax 但是,如果不需要立刻求和,而是在后面的代码中,根据需要再计算怎么办?可以不返回求和的结果,而是返回求和的函数! def lazy_sum(*args): def sum(): ax = 0 for n in args:

  • 深入讲解Python中的迭代器和生成器

    在Python中,很多对象都是可以通过for语句来直接遍历的,例如list.string.dict等等,这些对象都可以被称为可迭代对象.至于说哪些对象是可以被迭代访问的,就要了解一下迭代器相关的知识了. 迭代器 迭代器对象要求支持迭代器协议的对象,在Python中,支持迭代器协议就是实现对象的__iter__()和next()方法.其中__iter__()方法返回迭代器对象本身:next()方法返回容器的下一个元素,在结尾时引发StopIteration异常. __iter__()和next()

  • shell脚本中执行python脚本并接收其返回值的例子

    1.在shell脚本执行python脚本时,需要通过python脚本的返回值来判断后面程序要执行的命令 例:有两个py程序  hello.py 复制代码 代码如下: def main():     print "Hello" if __name__=='__main__':     main() world.py def main():     print "Hello" if __name__=='__main__':     main() shell 脚本 te

  • 举例讲解Python中的迭代器、生成器与列表解析用法

    迭代器:初探 上一章曾经提到过,其实for循环是可用于任何可迭代的对象上的.实际上,对Python中所有会从左至右扫描对象的迭代工具而言都是如此,这些迭代工具包括了for循环.列表解析.in成员关系测试以及map内置函数等. "可迭代对象"的概念在Python中是相当新颖的,基本这就是序列观念的通用化:如果对象时实际保存的序列,或者可以再迭代工具环境中一次产生一个结果的对象,那就看做是可迭代的. >>文件迭代器 作为内置数据类型的文件也是可迭代的,它有一个名为__next_

  • Python的迭代器和生成器使用实例

    一.迭代器Iterators 迭代器仅是一容器对象,它实现了迭代器协议.它有两个基本方法: 1)next方法 返回容器的下一个元素 2)__iter__方法 返回迭代器自身 迭代器可使用内建的iter方法创建,见例子: 复制代码 代码如下: >>> i = iter('abc') >>> i.next() 'a' >>> i.next() 'b' >>> i.next() 'c' >>> i.next() Trace

  • Python 详解基本语法_函数_返回值

    Python 详解基本语法 概要: 函数的返回值是函数重要的组成部分.函数的根本在于实现程序的部分功能,所以很多时候我们需要将函数执行后的结果返回给程序再由程序作出进一步的操作.可以说是函数的返回值令函数与函数之间,函数与主程序之间更加紧密的联系起来. 函数的返回值 在Python的函数中都有一个返回值,默认为None.也可以使用return value语句来定义一个且只能定义一个可为任意类型的返回值.但是我们能够返回一个序列类型的对象,来实现返回多个值的效果. Example: 返回一个Lis

随机推荐