深入了解mysql索引

1、索引原理

索引被用来快速找出在一个列上用一特定值的行。没有索引,MySQL不得不首先以第一条记录开始,然后读完整个表直到它找出相关的行。表越大,花费时间越多。对于一个有序字段,可以运用二分查找(Binary Search),这就是为什么性能能得到本质上的提高。MYISAM和INNODB都是用B+Tree作为索引结构

(主键,unique 都会默认的添加索引)

2、创建索引

如果未使用索引,我们查询 工资大于 1500的会执行全表扫描

什么时候需要给字段添加索引:

-表中该字段中的数据量庞大

-经常被检索,经常出现在where子句中的字段

-经常被DML操作的字段不建议添加索引

索引等同于一本书的目录

主键会自动添加索引,所以尽量根据主键查询效率较高。

如经常根据sal进行查询,并且遇到了性能瓶颈,首先查看程序是否存算法问题,再考虑对sal建立索引,建立索引如下:

1、create unique index 索引名 on 表名(列名);

create unique index u_ename on emp(ename);

2、alter table 表名 add unique index 索引名 (列名);

2、alter table 表名 add unique index 索引名 (列名);

3、查看索引

show index from emp;

4、使用索引

注意一定不可以用select * … 可以看到type!=all了,说明使用了索引

explain select sal from emp where sal > 1500;

条件中的sal使用了索引

如上图:假如我们要查找sal大于1500的所有行,那么可以扫描索引,索引时排序的,结果得出7行,我们知道不会再有匹配的记录,可以退出了。

如果查找一个值,它在索引表中某个中间点以前不会出现,那么也有找到其第一个匹配索引项的定位算法,而不用进行表的顺序扫描(如二分查找法)。

这样,可以快速定位到第一个匹配的值,以节省大量搜索时间。数据库利用了各种各样的快速定位索引值的技术,通常这些技术都属于DBA的工作。

5、删除索引

DROP INDEX index_name ON talbe_name

ALTER TABLE table_name DROP INDEX index_name

ALTER TABLE table_name DROP PRIMARY KEY

其中,前两条语句是等价的,删除掉table_name中的索引index_name。

第3条语句只在删除PRIMARY KEY索引时使用,因为一个表只可能有一个PRIMARY KEY索引,

mysql> ALTER TABLE EMP DROP INDEX test_index;

删除后就不再使用索引了,查询会执行全表扫描。

以上就是深入了解mysql索引的详细内容,更多关于mysql索引的资料请关注我们其它相关文章!

(0)

相关推荐

  • MySQL8新特性之降序索引底层实现详解

    什么是降序索引 大家可能对索引比较熟悉,而对降序索引比较陌生,事实上降序索引是索引的子集. 我们通常使用下面的语句来创建一个索引: create index idx_t1_bcd on t1(b,c,d); 上面sql的意思是在t1表中,针对b,c,d三个字段创建一个联合索引. 但是大家不知道的是,上面这个sql实际上和下面的这个sql是等价的: create index idx_t1_bcd on t1(b asc,c asc,d asc); asc表示的是升序,使用这种语法创建出来的索引叫做

  • Mysql索引类型与基本用法实例分析

    本文实例讲述了Mysql索引类型与基本用法.分享给大家供大家参考,具体如下: 索引 MySQL目前主要有以下几种索引类型: 普通索引 唯一索引 主键索引 组合索引 全文索引 - 普通索引 是最基本的索引,它没有任何限制. CREATE INDEX IndexName ON `TableName`(`字段名`(length)) - 唯一索引 与前面的普通索引类似,不同的就是:索引列的值必须唯一,但允许有空值.如果是组合索引,则列值的组合必须唯一. CREATE UNIQUE INDEX index

  • 快速了解MySQL 索引

    MySQL索引的建立对于MySQL的高效运行是很重要的,索引可以大大提高MySQL的检索速度. 打个比方,如果合理的设计且使用索引的MySQL是一辆兰博基尼的话,那么没有设计和使用索引的MySQL就是一个人力三轮车. 索引分单列索引和组合索引.单列索引,即一个索引只包含单个列,一个表可以有多个单列索引,但这不是组合索引.组合索引,即一个索包含多个列. 创建索引时,你需要确保该索引是应用在 SQL 查询语句的条件(一般作为 WHERE 子句的条件). 实际上,索引也是一张表,该表保存了主键与索引字

  • MySQL索引长度限制原理解析

    这篇文章主要介绍了MySQL索引长度限制原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 索引 TextField是不支持建立索引的 MySQL对索引字段长度有限制 innodb引擎的每个索引列长度限制为767字节(bytes),所有组成索引列的长度和不能大于3072字节 myisam引擎的每个索引列长度限制为1000字节,所有组成索引列的长度和不能大于1000字节 varchar的最大长度是指字符长度,若数据库字符集为utf-8,则一个

  • 一篇文章掌握MySQL的索引查询优化技巧

    前言 本文的内容是总结一些MySQL的常见使用技巧,以供没有DBA的团队参考.如无特殊说明,存储引擎以InnoDB为准. MySQL的特点 了解MySQL的特点有助于更好的使用MySQL,MySQL和其它常见数据库最大的不同在于存在存储引擎这个概念,存储引擎负责存储和读取数据.不同的存储引擎具有不同的特点,用户可以根据业务的特点选择适合的存储引擎,甚至是开发一个新的引擎.MySQL的逻辑架构大致如下: MySQL默认的存储引擎是InnoDB,该存储引擎的主要特点是: 支持事务处理 支持行级锁 数

  • MySQL中索引失效的常见场景与规避方法

    前言 之前有看过许多类似的文章内容,提到过一些sql语句的使用不当会导致MySQL的索引失效.还有一些MySQL"军规"或者规范写明了某些sql不能这么写,否则索引失效. 绝大部分的内容笔者是认可的,不过部分举例中笔者认为用词太绝对了,并没有说明其中的原由,很多人不知道为什么.所以笔者绝对再整理一遍MySQL中索引失效的常见场景,并分析其中的原由供大家参考. 当然请记住,explain是一个好习惯! MySQL索引失效的常见场景 在验证下面的场景时,请准备足够多的数据量,因为数据量少时

  • MySQL 的覆盖索引与回表的使用方法

    两大类索引 使用的存储引擎:MySQL5.7 InnoDB 聚簇索引 * 如果表设置了主键,则主键就是聚簇索引 * 如果表没有主键,则会默认第一个NOT NULL,且唯一(UNIQUE)的列作为聚簇索引 * 以上都没有,则会默认创建一个隐藏的row_id作为聚簇索引 InnoDB的聚簇索引的叶子节点存储的是行记录(其实是页结构,一个页包含多行数据),InnoDB必须要有至少一个聚簇索引. 由此可见,使用聚簇索引查询会很快,因为可以直接定位到行记录. 普通索引 普通索引也叫二级索引,除聚簇索引外的

  • MySQL字符串索引更合理的创建规则讨论

    前言 针对使用MySQL的索引,我们之前介绍过索引的最左前缀规则,索引覆盖,唯一索引和普通索引的使用以及优化器选择索引等概念,今天我们讨论下如何更合理的给字符串创建索引. 如何更好的创建字符串索引 我们知道,MySQL中,数据和索引都是在一颗 B+树 上,我们建立索引的时候,这棵树所占用的空间越小,检索速度就会越快,而varchar格式的字符串有些会很长,那么在效率为上的今天,我们如何更加合理的建立字符串的索引呢? 假如说我们一张表中存在 email 字段,现在要给 email 字段创建索引,e

  • Mysql数据库高级用法之视图、事务、索引、自连接、用户管理实例分析

    本文实例讲述了Mysql数据库高级用法之视图.事务.索引.自连接.用户管理.分享给大家供大家参考,具体如下: 视图 视图是对若干张基本表的引用,一张虚表,只查询语句执行结果的字段类型和约束,不存储具体的数据(基本表数据发生了改变,视图也会跟着改变),方便操作,特别是查询操作,减少复杂的SQL语句,增强可读性. 1.----创建视图: create view 视图名称(一般以v_开头) as 查询语句; 2.----查看视图: select * from 视图名称; 3.----删除视图: dro

  • MySQL 索引知识汇总

    MySQL索引的建立对于MySQL的高效运行是很重要的,索引可以大大提高MySQL的检索速度. 打个比方,如果合理的设计且使用索引的MySQL是一辆兰博基尼的话,那么没有设计和使用索引的MySQL就是一个人力三轮车. 拿汉语字典的目录页(索引)打比方,我们可以按拼音.笔画.偏旁部首等排序的目录(索引)快速查找到需要的字. 索引分单列索引和组合索引.单列索引,即一个索引只包含单个列,一个表可以有多个单列索引,但这不是组合索引.组合索引,即一个索引包含多个列. 创建索引时,你需要确保该索引是应用在

随机推荐