Python绘图之二维图与三维图详解

各位工程师累了吗? 推荐一篇可以让你技术能力达到出神入化的网站"持久男"

1.二维绘图

a. 一维数据集

用 Numpy ndarray 作为数据传入 ply

1.

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(1000)
y = np.random.standard_normal(10)
print "y = %s"% y
x = range(len(y))
print "x=%s"% x
plt.plot(y)
plt.show()

2.操纵坐标轴和增加网格及标签的函数

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(1000)
y = np.random.standard_normal(10)
plt.plot(y.cumsum())
plt.grid(True) ##增加格点
plt.axis('tight') # 坐标轴适应数据量 axis 设置坐标轴
plt.show()

3.plt.xlim 和 plt.ylim 设置每个坐标轴的最小值和最大值

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(1000)
y = np.random.standard_normal(20)
plt.plot(y.cumsum())
plt.grid(True) ##增加格点
plt.xlim(-1,20)
plt.ylim(np.min(y.cumsum())- 1, np.max(y.cumsum()) + 1)

plt.show()

4. 添加标题和标签 plt.title, plt.xlabe, plt.ylabel 离散点, 线

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(1000)
y = np.random.standard_normal(20)

plt.figure(figsize=(7,4)) #画布大小
plt.plot(y.cumsum(),'b',lw = 1.5) # 蓝色的线
plt.plot(y.cumsum(),'ro') #离散的点
plt.grid(True)
plt.axis('tight')
plt.xlabel('index')
plt.ylabel('value')
plt.title('A simple Plot')
plt.show()

b. 二维数据集

np.random.seed(2000)
y = np.random.standard_normal((10, 2)).cumsum(axis=0)  #10行2列  在这个数组上调用cumsum 计算赝本数据在0轴(即第一维)上的总和
print y

1.两个数据集绘图

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((10, 2))
plt.figure(figsize=(7,5))
plt.plot(y, lw = 1.5)
plt.plot(y, 'ro')
plt.grid(True)
plt.axis('tight')
plt.xlabel('index')
plt.ylabel('value')
plt.title('A simple plot')
plt.show()

2.添加图例 plt.legend(loc = 0)

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((10, 2))
plt.figure(figsize=(7,5))
plt.plot(y[:,0], lw = 1.5,label = '1st')
plt.plot(y[:,1], lw = 1.5, label = '2st')
plt.plot(y, 'ro')
plt.grid(True)
plt.legend(loc = 0) #图例位置自动
plt.axis('tight')
plt.xlabel('index')
plt.ylabel('value')
plt.title('A simple plot')
plt.show()

3.使用2个 Y轴(左右)fig, ax1 = plt.subplots() ax2 = ax1.twinx()

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((10, 2))

fig, ax1 = plt.subplots() # 关键代码1 plt first data set using first (left) axis

plt.plot(y[:,0], lw = 1.5,label = '1st')

plt.plot(y[:,0], 'ro')
plt.grid(True)
plt.legend(loc = 0) #图例位置自动
plt.axis('tight')
plt.xlabel('index')
plt.ylabel('value')
plt.title('A simple plot')

ax2 = ax1.twinx() #关键代码2 plt second data set using second(right) axis
plt.plot(y[:,1],'g', lw = 1.5, label = '2nd')
plt.plot(y[:,1], 'ro')
plt.legend(loc = 0)
plt.ylabel('value 2nd')
plt.show()

4.使用两个子图(上下,左右)plt.subplot(211)

通过使用 plt.subplots 函数,可以直接访问底层绘图对象,例如可以用它生成和第一个子图共享 x 轴的第二个子图.

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((10, 2))

plt.figure(figsize=(7,5))
plt.subplot(211) #两行一列,第一个图
plt.plot(y[:,0], lw = 1.5,label = '1st')
plt.plot(y[:,0], 'ro')
plt.grid(True)
plt.legend(loc = 0) #图例位置自动
plt.axis('tight')
plt.ylabel('value')
plt.title('A simple plot')

plt.subplot(212) #两行一列.第二个图
plt.plot(y[:,1],'g', lw = 1.5, label = '2nd')
plt.plot(y[:,1], 'ro')
plt.grid(True)
plt.legend(loc = 0)
plt.xlabel('index')
plt.ylabel('value 2nd')
plt.axis('tight')
plt.show()

5.左右子图

有时候,选择两个不同的图标类型来可视化数据可能是必要的或者是理想的.利用子图方法:

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((10, 2))

plt.figure(figsize=(10,5))
plt.subplot(121) #两行一列,第一个图
plt.plot(y[:,0], lw = 1.5,label = '1st')
plt.plot(y[:,0], 'ro')
plt.grid(True)
plt.legend(loc = 0) #图例位置自动
plt.axis('tight')
plt.xlabel('index')
plt.ylabel('value')
plt.title('1st Data Set')

plt.subplot(122)
plt.bar(np.arange(len(y)), y[:,1],width=0.5, color='g',label = '2nc')
plt.grid(True)
plt.legend(loc=0)
plt.axis('tight')
plt.xlabel('index')
plt.title('2nd Data Set')
plt.show()

c.其他绘图样式,散点图,直方图等

1.散点图

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((1000, 2))
plt.figure(figsize=(7,5))
plt.scatter(y[:,0],y[:,1],marker='o')
plt.grid(True)
plt.xlabel('1st')
plt.ylabel('2nd')
plt.title('Scatter Plot')
plt.show()

2.直方图 plt.hist

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((1000, 2))
plt.figure(figsize=(7,5))
plt.hist(y,label=['1st','2nd'],bins=25)
plt.grid(True)
plt.xlabel('value')
plt.ylabel('frequency')
plt.title('Histogram')
plt.show()

3.直方图 同一个图中堆叠

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((1000, 2))
plt.figure(figsize=(7,5))
plt.hist(y,label=['1st','2nd'],color=['b','g'],stacked=True,bins=20)
plt.grid(True)
plt.xlabel('value')
plt.ylabel('frequency')
plt.title('Histogram')
plt.show()

4.箱型图 boxplot

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((1000, 2))
fig, ax = plt.subplots(figsize=(7,4))
plt.boxplot(y)

plt.grid(True)
plt.setp(ax,xticklabels=['1st' , '2nd'])
plt.xlabel('value')
plt.ylabel('frequency')
plt.title('Histogram')
plt.show()

5.绘制函数

from matplotlib.patches import Polygon
import numpy as np
import matplotlib.pyplot as plt

#1. 定义积分函数
def func(x):
  return 0.5 * np.exp(x)+1

#2.定义积分区间
a,b = 0.5, 1.5
x = np.linspace(0, 2 )
y = func(x)
#3.绘制函数图形
fig, ax = plt.subplots(figsize=(7,5))
plt.plot(x,y, 'b',linewidth=2)
plt.ylim(ymin=0)
#4.核心, 我们使用Polygon函数生成阴影部分,表示积分面积:
Ix = np.linspace(a,b)
Iy = func(Ix)
verts = [(a,0)] + list(zip(Ix, Iy))+[(b,0)]
poly = Polygon(verts,facecolor='0.7',edgecolor = '0.5')
ax.add_patch(poly)
#5.用plt.text和plt.figtext在图表上添加数学公式和一些坐标轴标签。
plt.text(0.5 *(a+b),1,r"$\int_a^b f(x)\mathrm{d}x$", horizontalalignment ='center',fontsize=20)
plt.figtext(0.9, 0.075,'$x$')
plt.figtext(0.075, 0.9, '$f(x)$')
#6. 分别设置x,y刻度标签的位置。
ax.set_xticks((a,b))
ax.set_xticklabels(('$a$','$b$'))
ax.set_yticks([func(a),func(b)])
ax.set_yticklabels(('$f(a)$','$f(b)$'))
plt.grid(True)

2.金融学图表 matplotlib.finance

1.烛柱图 candlestick

#!/etc/bin/python
#coding=utf-8
import matplotlib.pyplot as plt
import matplotlib.finance as mpf
start = (2014, 5,1)
end = (2014, 7,1)
quotes = mpf.quotes_historical_yahoo('^GDAXI',start,end)
# print quotes[:2]

fig, ax = plt.subplots(figsize=(8,5))
fig.subplots_adjust(bottom = 0.2)
mpf.candlestick(ax, quotes, width=0.6, colorup='b',colordown='r')
plt.grid(True)
ax.xaxis_date() #x轴上的日期
ax.autoscale_view()
plt.setp(plt.gca().get_xticklabels(),rotation=30) #日期倾斜
plt.show()

2. plot_day_summary

该函数提供了一个相当类似的图标类型,使用方法和 candlestick 函数相同,使用类似的参数. 这里开盘价和收盘价不是由彩色矩形表示,而是由两条短水平线表示.

#!/etc/bin/python
#coding=utf-8
import matplotlib.pyplot as plt
import matplotlib.finance as mpf
start = (2014, 5,1)
end = (2014, 7,1)
quotes = mpf.quotes_historical_yahoo('^GDAXI',start,end)
# print quotes[:2]

fig, ax = plt.subplots(figsize=(8,5))
fig.subplots_adjust(bottom = 0.2)
mpf.plot_day_summary(ax, quotes, colorup='b',colordown='r')
plt.grid(True)
ax.xaxis_date() #x轴上的日期
ax.autoscale_view()
plt.setp(plt.gca().get_xticklabels(),rotation=30) #日期倾斜
plt.show()

3.股价数据和成交量

#!/etc/bin/python
#coding=utf-8
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.finance as mpf
start = (2014, 5,1)
end = (2014, 7,1)
quotes = mpf.quotes_historical_yahoo('^GDAXI',start,end)
# print quotes[:2]

quotes = np.array(quotes)
fig, (ax1, ax2) = plt.subplots(2, sharex=True, figsize=(8,6))
mpf.candlestick(ax1, quotes, width=0.6,colorup='b',colordown='r')
ax1.set_title('Yahoo Inc.')
ax1.set_ylabel('index level')
ax1.grid(True)
ax1.xaxis_date()
plt.bar(quotes[:,0] - 0.25, quotes[:, 5], width=0.5)

ax2.set_ylabel('volume')
ax2.grid(True)
ax2.autoscale_view()
plt.setp(plt.gca().get_xticklabels(),rotation=30)
plt.show()

3.3D 绘图

#!/etc/bin/python
#coding=utf-8
import numpy as np
import matplotlib.pyplot as plt

stike = np.linspace(50, 150, 24)
ttm = np.linspace(0.5, 2.5, 24)
stike, ttm = np.meshgrid(stike, ttm)
print stike[:2]

iv = (stike - 100) ** 2 / (100 * stike) /ttm
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure(figsize=(9,6))
ax = fig.gca(projection='3d')
surf = ax.plot_surface(stike, ttm, iv, rstride=2, cstride=2, cmap=plt.cm.coolwarm, linewidth=0.5, antialiased=True)
ax.set_xlabel('strike')
ax.set_ylabel('time-to-maturity')
ax.set_zlabel('implied volatility')

plt.show()

到此这篇关于Python绘图之二维图与三维图详解的文章就介绍到这了,更多相关Python绘图内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python绘图之柱形图绘制详解

    前言 用python编程绘图,其实非常简单.中学生.大学生.研究生都能通过这10篇教程从入门到精通!快速绘制几种简单的柱状图. 1垂直柱图(普通柱图) 绘制普通柱图的python代码如下: (左右滑动可以查看全部代码) # -*- coding:utf-8 -*- # 申明编码格式为utf-8 import matplotlib as mpl import matplotlib.pyplot as plt mpl.rcParams["font.sans-serif"]=["S

  • python应用Axes3D绘图(批量梯度下降算法)

    本文实例为大家分享了python批量梯度下降算法的具体代码,供大家参考,具体内容如下 问题: 将拥有两个自变量的二阶函数绘制到空间坐标系中,并通过批量梯度下降算法找到并绘制其极值点 大体思路: 首先,根据题意确定目标函数:f(w1,w2) = w1^2 + w2^2 + 2 w1 w2 + 500 然后,针对w1,w2分别求偏导,编写主方法求极值点 而后,创建三维坐标系绘制函数图像以及其极值点即可 具体代码实现以及成像结果如下: import numpy as np import matplot

  • python海龟绘图实例教程

    本文以实例形式介绍了python turtle模块即海龟绘图的使用方法,对于需要进行图形编程的朋友相信会有一定的借鉴价值. python turtle模块简介:  python2.6版本中引入的一个简单的绘图工具,叫做海龟绘图(Turtle Graphics) 1.使用海龟绘图首先我们需要导入turtle,如下所示: from turtle import * #将turtle中的所有方法导入 2.海龟绘图属性: (1)位置  (2)方向  (3)画笔(画笔的属性,颜色.画线的宽度) 3.操纵海龟

  • Python 绘图和可视化详细介绍

    Python之绘图和可视化 1. 启用matplotlib 最常用的Pylab模式的IPython(IPython --pylab) 2. matplotlib的图像都位于Figure对象中. 可以使用plt.figure创建一个新的Figure,不能通过空Figure绘图,必须用add_subplot创建一个或多个subplot axes[0,1]可以通过sharex和sharey指定subplot应该具有相同的X轴或Y轴. 利用Figure的subplots_adjust方法可以修改间距,w

  • Python实现手绘图效果实例分享

    首先我们来看看原图: 接着我们来看看效果图: 通过分析我们不难发现以下特征: 主要颜色为黑白灰 边界线条较重 相同或相近色趋于白色 略有光源效果 需要用到的库有: numpy PIL 代码实现: import numpy as np from PIL import Image baseImg = Image.open("./img/myimg2.jpg").convert("L")  # 这里放置你要手绘的图片原图 a = np.array(baseImg).ast

  • 对python mayavi三维绘图的实现详解

    网上下载mayavi的官方帮助文档,里面有很多例子,下面的记录都是查看手册后得到的. http://code.enthought.com/projects/mayavi/docs/development/latex/mayavi/mayavi_user_guide.pdf python的mayavi.mlab库中的绘图函数有很多候选参数,但下文记录并没有过多讨论,本人也是需要用到才查看手册的. 安装好mayavi2的绘图环境后,可以结合numpy进行科学绘图,在代码中事先加入如下代码: impo

  • python绘图方法实例入门

    本文实例讲述了python绘图方法.分享给大家供大家参考.具体如下: # -*- coding:utf-8 -*- import matplotlib.pyplot as plt def main(): # 颜色列表 colorList = ['b','g','r','c','m','y','k'] # 共用的横坐标 threadList = [1,2,4,8,10] # 设置横坐标和纵坐标的名称 plt.xlabel('threads') plt.ylabel('concurrent') #

  • Python绘图之二维图与三维图详解

    各位工程师累了吗? 推荐一篇可以让你技术能力达到出神入化的网站"持久男" 1.二维绘图 a. 一维数据集 用 Numpy ndarray 作为数据传入 ply 1. import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt np.random.seed(1000) y = np.random.standard_normal(10) print "y = %s"% y x =

  • Python绘制二维曲线的日常应用详解

    使用Python绘制出类似Excel或者MATLAB的曲线还是比较容易就能够实现的,需要用到的额外库有两个,numpy和matplotlib.使用这两个模块实现的曲线绘制其实在一定程度上更像是MATLAB的plot功能,不过今天看了一下matplotlib网站上的信息,现在的功能更为强劲了,而且已经支持三维图像的绘制. 模块库的安装非常简单,我使用的Mac,在Mac上用pip进行了两个模块库的安装都十分顺畅.相信其他平台基本上也都这样,如果能够联网,这种安装方式是十分推荐的,确实是简单. 我用P

  • PHP基于phpqrcode类生成二维码的方法示例详解

    HP QR Code是一个PHP二维码生成类库,利用它可以轻松生成二维码,官网提供了下载和多个演示demo,查看地址: http://phpqrcode.sourceforge.net/ 下载官网提供的类库后,只需要使用phpqrcode.php就可以生成二维码了,当然您的PHP环境必须开启支持GD2. phpqrcode.php提供了一个关键的png()方法,其中 参数$text表示生成二位的的信息文本: 参数$outfile表示是否输出二维码图片 文件,默认否: 参数$level表示容错率,

  • Python二维码生成识别实例详解

    前言 在 JavaWeb 开发中,一般使用 Zxing 来生成和识别二维码,但是,Zxing 的识别有点差强人意,不少相对模糊的二维码识别率很低.不过就最新版本的测试来说,识别率有了现显著提高. 对比 在没接触 Python 之前,曾使用 Zbar 的客户端进行识别,测了大概几百张相对模糊的图片,Zbar的识别速度要快很多,识别率也比 Zxing 稍微准确那边一丢丢,但是,稍微模糊一点就无法识别.相比之下,微信和支付宝的识别效果就逆天了. 代码案例 # -*- coding:utf-8 -*-

  • 微信小程序扫描二维码获取信息实例详解

    1.最简单的扫二维码获得信息. 首先,在网上找一个二维码生成网站,生成一个二维码,我用的是草料二维码,随便生成了一个二维码做测试. 就这个. 我搭建的界面如下: 如图可见,点击1中的"点我扫一扫",可以扫二维码,扫错了如2所示,扫对了如3所示."你傻不傻啊?"就是上图的二维码内容. 嗯,大家都不傻. 4是小程序的结构,就是快速模板建立的,index页面里的内容都删空了,替换了新的代码,其中wxss文件没有东西,因为并没有对界面进行设计. 其中index.wxml的代

  • Android开发实现模仿360二维码扫描功能实例详解

    本文实例讲述了Android开发实现模仿360二维码扫描功能的方法.分享给大家供大家参考,具体如下: 一.效果图: 二.框架搭建 1.首先,下载最新zxing开源项目. 下载地址:http://code.google.com/p/zxing/ 或 点击此处本站下载. 2.分析项目结构,明确扫描框架需求.在zxing中,有很多其他的功能,项目结构比较复杂:针对二维码QRCode扫描,我们需要几个包: (1)com.google.zxing.client.android.Camera 基于Camer

  • PHP 冒泡排序 二分查找 顺序查找 二维数组排序算法函数的详解

    数据结构很重要,算法+数据结构+文档=程序使用PHP描述冒泡排序算法,对象可以是一个数组 复制代码 代码如下: //冒泡排序(数组排序)function bubble_sort($array) {$count = count($array);if ($count <= 0)return false;for($i=0; $i<$count; $i++){for($j=$count-1; $j>$i; $j–){if ($array[$j] < $array[$j-1]){$tmp =

  • iOS中生成指定大小、指定颜色的二维码和条形码方法详解

    iOS7.0之后可以利用系统原生 API 生成二维码, iOS8.0之后可以生成条形码, 系统默认生成的颜色是黑色. 在这里, 利用以下方法可以生成指定大小.指定颜色的二维码和条形码, 还可以添加背景颜色.阴影效果, 以下是具体方法. 一. 生成二维码 Avilable in iOS 7.0 and later 方法如下: #pragma mark - 生成二维码 //Avilable in iOS 7.0 and later + (UIImage *)qrCodeImageWithConten

  • 微信小程序 二维码canvas绘制实例详解

    微信小程序 二维码canvas绘制 var canvas = { width: 100, height:36 }; function verification(ctx) { // //清空画布 ctx.clearRect(0, 0, canvas.width, canvas.height); // //生成随机颜色 function getRandomColor() { return "#" + ("00000" + ((Math.random() * 167772

  • AngularJS使用ng-repeat遍历二维数组元素的方法详解

    本文实例讲述了AngularJS使用ng-repeat遍历二维数组元素的方法.分享给大家供大家参考,具体如下: 问题: 最近在做报表的项目,有一种情况是后台返回给我的是一个二维数组,在前台将数据放入到表格中,因为我们用的是angularJS的前台框架,所以利用ng-repeat来实现. 实现方法: 首先在js中: $scope.Week = [[ '云南省 ', 'a', 's', 'd', 'e', 'w','t' ],[ '陕西省 ', 'l', 'p', 'o', 'i', 'u','y'

随机推荐