python疲劳驾驶困倦低头检测功能的实现
python疲劳驾驶困倦低头检测,代码如下所示:
def get_head_pose(shape): # 头部姿态估计 # (像素坐标集合)填写2D参考点 # 17左眉左上角/21左眉右角/22右眉左上角/26右眉右上角/36左眼左上角/39左眼右上角/42右眼左上角/ # 45右眼右上角/31鼻子左上角/35鼻子右上角/48左上角/54嘴右上角/57嘴中央下角/8下巴角 image_pts = np.float32([shape[17], shape[21], shape[22], shape[26], shape[36], shape[39], shape[42], shape[45], shape[31], shape[35], shape[48], shape[54], shape[57], shape[8]]) # solvePnP计算姿势——求解旋转和平移矩阵: # rotation_vec表示旋转矩阵,translation_vec表示平移矩阵,cam_matrix与K矩阵对应,dist_coeffs与D矩阵对应。 _, rotation_vec, translation_vec = cv2.solvePnP(object_pts, image_pts, cam_matrix, dist_coeffs) # projectPoints重新投影误差:原2d点和重投影2d点的距离(输入3d点、相机内参、相机畸变、r、t,输出重投影2d点) reprojectdst, _ = cv2.projectPoints(reprojectsrc, rotation_vec, translation_vec, cam_matrix, dist_coeffs) reprojectdst = tuple(map(tuple, reprojectdst.reshape(8, 2))) # 以8行2列显示 # 计算欧拉角calc euler angle rotation_mat, _ = cv2.Rodrigues(rotation_vec) # 罗德里格斯公式(将旋转矩阵转换为旋转向量) pose_mat = cv2.hconcat((rotation_mat, translation_vec)) # 水平拼接,vconcat垂直拼接 # decomposeProjectionMatrix将投影矩阵分解为旋转矩阵和相机矩阵 _, _, _, _, _, _, euler_angle = cv2.decomposeProjectionMatrix(pose_mat) pitch, yaw, roll = [math.radians(_) for _ in euler_angle] pitch = math.degrees(math.asin(math.sin(pitch))) roll = -math.degrees(math.asin(math.sin(roll))) yaw = math.degrees(math.asin(math.sin(yaw))) print('pitch:{}, yaw:{}, roll:{}'.format(pitch, yaw, roll)) return reprojectdst, euler_angle # 投影误差,欧拉角 def eye_aspect_ratio(eye): # 垂直眼标志(X,Y)坐标 A = dist.euclidean(eye[1], eye[5]) # 计算两个集合之间的欧式距离 B = dist.euclidean(eye[2], eye[4]) # 计算水平之间的欧几里得距离 # 水平眼标志(X,Y)坐标 C = dist.euclidean(eye[0], eye[3]) # 眼睛长宽比的计算 ear = (A + B) / (2.0 * C) # 返回眼睛的长宽比 return ear def mouth_aspect_ratio(mouth): # 嘴部 A = np.linalg.norm(mouth[2] - mouth[9]) # 51, 59 B = np.linalg.norm(mouth[4] - mouth[7]) # 53, 57 C = np.linalg.norm(mouth[0] - mouth[6]) # 49, 55 mar = (A + B) / (2.0 * C) return mar
python疲劳驾驶困倦低头检测
https://download.csdn.net/download/babyai996/85068772
到此这篇关于python疲劳驾驶困倦低头检测功能的实现的文章就介绍到这了,更多相关python疲劳驾驶检测内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
赞 (0)