python 图像的离散傅立叶变换实例

图像(MxN)的二维离散傅立叶变换可以将图像由空间域变换到频域中去,空间域中用x,y来表示空间坐标,频域由u,v来表示频率,二维离散傅立叶变换的公式如下:

在python中,numpy库的fft模块有实现好了的二维离散傅立叶变换函数,函数是fft2,输入一张灰度图,输出经过二维离散傅立叶变换后的结果,但是具体实现并不是直接用上述公式,而是用快速傅立叶变换。结果需要通过使用abs求绝对值才可以进行可视化,但是视觉效果并不理想,因为傅立叶频谱范围很大,所以要用log对数变换来改善视觉效果。

在使用log函数的时候,要写成log(1 + x) 而不是直接用log(x),这是为了避开对0做对数处理。

另外,图像变换的原点需要移动到频域矩形的中心,所以要对fft2的结果使用fftshift函数。最后也可以使用log来改善可视化效果。

代码如下:

import numpy as np
import matplotlib.pyplot as plt

img = plt.imread('photo.jpg')

#根据公式转成灰度图
img = 0.2126 * img[:,:,0] + 0.7152 * img[:,:,1] + 0.0722 * img[:,:,2]

#显示原图
plt.subplot(231),plt.imshow(img,'gray'),plt.title('original')

#进行傅立叶变换,并显示结果
fft2 = np.fft.fft2(img)
plt.subplot(232),plt.imshow(np.abs(fft2),'gray'),plt.title('fft2')

#将图像变换的原点移动到频域矩形的中心,并显示效果
shift2center = np.fft.fftshift(fft2)
plt.subplot(233),plt.imshow(np.abs(shift2center),'gray'),plt.title('shift2center')

#对傅立叶变换的结果进行对数变换,并显示效果
log_fft2 = np.log(1 + np.abs(fft2))
plt.subplot(235),plt.imshow(log_fft2,'gray'),plt.title('log_fft2')

#对中心化后的结果进行对数变换,并显示结果
log_shift2center = np.log(1 + np.abs(shift2center))
plt.subplot(236),plt.imshow(log_shift2center,'gray'),plt.title('log_shift2center')

运行结果:

根据公式实现的二维离散傅立叶变换如下:

import numpy as np
import matplotlib.pyplot as plt
PI = 3.141591265
img = plt.imread('temp.jpg')

#根据公式转成灰度图
img = 0.2126 * img[:,:,0] + 0.7152 * img[:,:,1] + 0.0722 * img[:,:,2]

#显示原图
plt.subplot(131),plt.imshow(img,'gray'),plt.title('original')

#进行傅立叶变换,并显示结果
fft2 = np.fft.fft2(img)
log_fft2 = np.log(1 + np.abs(fft2))
plt.subplot(132),plt.imshow(log_fft2,'gray'),plt.title('log_fft2')

h , w = img.shape
#生成一个同样大小的复数矩阵
F = np.zeros([h,w],'complex128')
for u in range(h):
 for v in range(w):
  res = 0
  for x in range(h):
   for y in range(w):
    res += img[x,y] * np.exp(-1.j * 2 * PI * (u * x / h + v * y / w))
  F[u,v] = res
log_F = np.log(1 + np.abs(F))
plt.subplot(133),plt.imshow(log_F,'gray'),plt.title('log_F')

直接根据公式实现复杂度很高,因为是四重循环,时间复杂度为 ,所以实际用的时候需要用快速傅立叶变换来实现

以上这篇python 图像的离散傅立叶变换实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python实现快速傅里叶变换的方法(FFT)

    本文介绍了Python实现快速傅里叶变换的方法(FFT),分享给大家,具体如下: 这里做一下记录,关于FFT就不做介绍了,直接贴上代码,有详细注释的了: import numpy as np from scipy.fftpack import fft,ifft import matplotlib.pyplot as plt import seaborn #采样点选择1400个,因为设置的信号频率分量最高为600赫兹,根据采样定理知采样频率要大于信号频率2倍,所以这里设置采样频率为1400赫兹(即

  • python 图像的离散傅立叶变换实例

    图像(MxN)的二维离散傅立叶变换可以将图像由空间域变换到频域中去,空间域中用x,y来表示空间坐标,频域由u,v来表示频率,二维离散傅立叶变换的公式如下: 在python中,numpy库的fft模块有实现好了的二维离散傅立叶变换函数,函数是fft2,输入一张灰度图,输出经过二维离散傅立叶变换后的结果,但是具体实现并不是直接用上述公式,而是用快速傅立叶变换.结果需要通过使用abs求绝对值才可以进行可视化,但是视觉效果并不理想,因为傅立叶频谱范围很大,所以要用log对数变换来改善视觉效果. 在使用l

  • python 图像平移和旋转的实例

    如下所示: import cv2 import math import numpy as np def move(img): height, width, channels = img.shape emptyImage2 = img.copy() x=20 y=20 for i in range(height): for j in range(width): if i>=x and j>=y: emptyImage2[i,j]=img[i-x][j-y] else: emptyImage2[i

  • python中二维阵列的变换实例

    本文实例讲述了python中二维阵列的变换方法.分享给大家供大家参考.具体方法如下: 先看如下代码: arr = [ [1, 2, 3], [4, 5, 6], [7, 8,9], [10, 11, 12]] print map(list, zip(*arr)) print '_-------------------------------------------------' print [[r[col] for r in arr] for col in range(len(arr[0]))]

  • C语言数据结构算法之实现快速傅立叶变换

    C语言数据结构算法之实现快速傅立叶变换 本实例将实现二维快速傅立叶变换,同时也将借此实例学习用c语言实现矩阵的基本操作.复数的基本掾作,复习所学过的动态内存分配.文件操作.结构指针的函数调用等内容. 很久以来,傅立叶变换一直是许多领域,如线性系统.光学.概率论.量子物理.天线.数字图像处理和信号分析等的一个基本分析工具,但是即便使用计算速度惊人的计算机计算离散傅立叶变换所花费的时间也常常是难以接受的,因此导致了快速傅立叶变换(FFT)的产生. 本实例将对一个二维数组进行正.反快速傅立叶变换.正傅

  • 深度学习开源框架基础算法之傅立叶变换的概要介绍

    傅立叶变换时数字信号处理的重要方法之一,是法国数学家傅立叶在1807年在法国科学学会上发表的一篇文章中所提出的,在文章中使用了正弦函数描述温度分布,而且提出了一个著名的论断:任何连续性的周期信号都可以由一组适当的正弦曲线组合而成.而这个论断被当时审查论文的著名数学家拉格朗日所否定,拉格朗日认为正弦函数无法组合成一个个带有棱角的信号,但是从无限逼近的角度考虑,可以使用正弦函数来非常逼近期直到表示方法不存在明显差异,这篇论文最终在在拉格朗日死后15年之久才得以发表. 傅立叶变换的分类 根据信号是是周

  • Python使用scipy.fft进行大学经典的傅立叶变换

    傅里叶变换是在高数是一个很重要的知识点,今天将结合Python代码实现傅立叶变换. 傅立叶变换 我们平时是如何去分解一个复杂的问题呢?一个经典的方法就是把这个复杂的问题分解成为多个简单的可操作的子问题, 傅立叶变换也是基于这个思想. 傅里叶分析是研究如何将数学函数分解为一系列更简单的三角函数的领域.傅里叶变换是该领域的一种工具,用于将函数分解为其分量频率. 在本教程中,傅立叶变换是一种工具,可以获取信号并查看其中每个频率的功率.看一看该傅立叶变换中的重要术语: 信号:信号是随时间变化的信息.例如

  • Python图像运算之图像灰度非线性变换详解

    目录 一.图像灰度非线性变换 二.图像灰度对数变换 三.图像灰度伽玛变换 四.总结 一.图像灰度非线性变换 原始图像的灰度值按照DB=DA×DA/255的公式进行非线性变换,其代码如下: # -*- coding: utf-8 -*- # By:Eastmount import cv2 import numpy as np import matplotlib.pyplot as plt #读取原始图像 img = cv2.imread('luo.png') #图像灰度转换 grayImage =

  • Python 将RGB图像转换为Pytho灰度图像的实例

    问题: 我正尝试使用matplotlib读取RGB图像并将其转换为灰度. 在matlab中,我使用这个: img = rgb2gray(imread('image.png')); 在matplotlib tutorial中他们没有覆盖它.他们只是在图像中阅读 import matplotlib.image as mpimg img = mpimg.imread('image.png') 然后他们切片数组,但是这不是从我所了解的将RGB转换为灰度. lum_img = img[:,:,0] 编辑:

  • python opencv判断图像是否为空的实例

    如下所示: import cv2 im = cv2.imread('2.jpg') if im is None: print("图像为空") # cv2.imshow("ss", im) # cv2.waitKey(0) 以上这篇python opencv判断图像是否为空的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • 用Python去除图像的黑色或白色背景实例

    用Python去除背景,得到有效的图像 此目的是为了放入深度学习计算中来减少计算量,同时突出特征,原图像为下图,命名为1.jpg,在此去除白色背景,黑色背景同理 需要对原图像进行的处理是去掉白色背景,抠出有效的参与计算的图形的大小即下图 对此有两个思路: 用掩模法得到有效部分,其次去掉空白,但太繁琐喽,并且一万多张图片,其不弄到天荒地老(截图也是哦) 对图像进行处理,即先做numpy变化,后反变换,将255-原图像,此时得到的图像就是 在此计算图像的横轴相加为0,纵轴相加为0,删去和为0的列和行

随机推荐