MySQL 分表分库怎么进行数据切分

关系型数据库本身比较容易成为系统瓶颈,单机存储容量、连接数、处理能力都有限。当单表的数据量达到1000W或100G以后,由于查询维度较多,即使添加从库、优化索引,做很多操作时性能仍下降严重。此时就要考虑对其进行切分了,切分的目的就在于减少数据库的负担,缩短查询时间。

数据库分布式核心内容无非就是数据切分(Sharding)以及切分后对数据的定位、整合。数据切分就是将数据分散存储到多个数据库中,使得单一数据库中的数据量变小,通过扩充主机的数量缓解单一数据库的性能问题,从而达到提升数据库操作性能的目的。

数据切分根据其切分类型,可以分为两种方式:垂直(纵向)切分和水平(横向)切分。

1.垂直(纵向)切分

垂直切分常见有垂直分库和垂直分表两种。

1.1 垂直分库

就是根据业务耦合性,将关联度低的不同表存储在不同的数据库。做法与大系统拆分为多个小系统类似,按业务

分类进行独立划分。与"微服务治理"的做法相似,每个微服务使用单独的一个数据库。如图:

将不同模块的数据表分库存储。模块间不相互关联查询

如果有,就需要通过数据冗余或者应层二次加工来解决。这种业务方法和数据结构最清晰。但若不能杜绝跨库关联查询,宣告此路不同

1.2 垂直分表

是基于数据库中的"列"进行,某个表字段较多,可以新建一张扩展表,将不经常用或字段长度较大的字段拆分出去到扩展表中。在字段很多的情况下(例如一个大表有100多个字段),通过"大表拆小表",更便于开发与维护,也能避免跨页问题,MySQL底层是通过数据页存储的,一条记录占用空间过大会导致跨页,造成额外的性能开销。另外数据库以行为单位将数据加载到内存中,这样表中字段长度较短且访问频率较高,内存能加载更多的数据,命中率更高,减少了磁盘IO,从而提升了数据库性能。

垂直切分的优点:

  • 解决业务系统层面的耦合,业务清晰
  • 与微服务的治理类似,也能对不同业务的数据进行分级管理、维护、监控、扩展等
  • 高并发场景下,垂直切分一定程度的提升IO、数据库连接数、单机硬件资源的瓶颈

缺点:

  • 部分表无法join,只能通过接口聚合方式解决,提升了开发的复杂度
  • 分布式事务处理复杂
  • 依然存在单表数据量过大的问题(需要水平切分)

2. 水平(横向)切分

当一个应用难以再细粒度的垂直切分,或切分后数据量行数巨大,存在单库读写、存储性能瓶颈,这时候就需要进行水平切分了。

水平切分分为库内分表和分库分表,是根据表内数据内在的逻辑关系,将同一个表按不同的条件分散到多个数据库或多个表中,每个表中只包含一部分数据,从而使得单个表的数据量变小,达到分布式的效果。如图所示:

相对纵向切分这一将表分类的做法,此法是按表内每个字段的某个规则来将数据分散存储于不同的数据库(或不同的表),也就是按照数行来进行切分数据。

库内分表只解决了单一表数据量过大的问题,但没有将表分布到不同机器的库上,因此对于减轻MySQL数据库的压力来说,帮助不是很大,大家还是竞争同一个物理机的CPU、内存、网络IO,最好通过分库分表来解决。

水平切分的优点:

  • 不存在单库数据量过大、高并发的性能瓶颈,提升系统稳定性和负载能力
  • 应用端改造较小,不需要拆分业务模块

缺点:

  • 跨分片的事务一致性难以保证
  • 跨库的join关联查询性能较差
  • 数据多次扩展难度和维护量极大

水平切分后同一张表会出现在多个数据库/表中,每个库/表的内容不同。几种典型的数据分片规则为:

2.1 根据数值范围

按照时间区间或ID区间来切分。例如:按日期将不同月甚至是日的数据分散到不同的库中;将userId为1~9999的记录分到第一个库,10000~20000的分到第二个库,以此类推。某种意义上,某些系统中使用的"冷热数据分离",将一些使用较少的历史数据迁移到其他库中,业务功能上只提供热点数据的查询,也是类似的实践。

这样的优点在于:

  • 单表大小可控
  • 天然便于水平扩展,后期如果想对整个分片集群扩容时,只需要添加节点即可,无需对其他分片的数据进行迁移
  • 使用分片字段进行范围查找时,连续分片可快速定位分片进行快速查询,有效避免跨分片查询的问题。

缺点:

  • 热点数据成为性能瓶颈。连续分片可能存在数据热点,例如按时间字段分片,有些分片存储最近时间段内的数据,可能会被频繁的读写,而有些分片存储的历史数据,则很少被查询

2.2 根据数值取模

一般采用hash取模mod的切分方式,例如:将 Customer 表根据 cusno 字段切分到4个库中,余数为0的放到第一个库,余数为1的放到第二个库,以此类推。这样同一个用户的数据会分散到同一个库中,如果查询条件带有cusno字段,则可明确定位到相应库去查询。

优点:

  • 数据分片相对比较均匀,不容易出现热点和并发访问的瓶颈

缺点:

  • 后期分片集群扩容时,需要迁移旧的数据(使用一致性hash算法能较好的避免这个问题)
  • 容易面临跨分片查询的复杂问题。比如上例中,如果频繁用到的查询条件中不带cusno时,将会导致无法定位数据库,从而需要同时向4个库发起查询,再在内存中合并数据,取最小集返回给应用,分库反而成为拖累。

以上就是MySQL 分表分库怎么进行数据切分的详细内容,更多关于MySQL 分表分库进行数据切分的资料请关注我们其它相关文章!

(0)

相关推荐

  • MySQL切分查询用法分析

    本文实例讲述了MySQL切分查询用法.分享给大家供大家参考,具体如下: 对于大查询有时需要'分而治之',将大查询切分为小查询: 每个查询功能完全一样,但只完成原来的一小部分,每次查询只返回一小部分结果集. 删除旧的数据就是一个很好地例子.定期清理旧数据时,如果一条sql涉及了大量的数据时,可能会一次性锁住多个表或行,耗费了大量的系统资源,却阻塞了其他很多小的但重要的查询.将一个大得DELETE语句切分为较小的查询时,可以尽量减少影响msql的性能,同时减少mysql复制造成的延迟. 例如,每个月

  • mysql数据库分表分库的策略

    一.先说一下为什么要分表: 当一张的数据达到几百万时,你查询一次所花的时间会变多,如果有联合查询的话,有可能会死在那儿了.分表的目的就在于此,减小数据库的负担,缩短查询时间.日常开发中我们经常会遇到大表的情况,所谓的大表是指存储了百万级乃至千万级条记录的表.这样的表过于庞大,导致数据库在查询和插入的时候耗时太长,性能低下,如果涉及联合查询的情况,性能会更加糟糕.分表和表分区的目的就是减少数据库的负担,提高数据库的效率,通常点来讲就是提高表的增删改查效率.数据库中的数据量不一定是可控的,在未进行分

  • MySQL切分函数substring()的具体使用

      MySQL字符串截取函数主要有:left(), right(), substring(), substring_index() 四种.各有其使用场景.今天,让我带大家花几分钟时间来熟知它们,Mark! 声明一下:在MySQL中,下标索引是从1开始的,而不是像java中从0开始的喔! 一.LEFT() 函数   LEFT(string,length) ,从字符串string左边第一位开始,截取长度为length个字符.length应大于0,如<=0,返回空字符串.示例如下: mysql> S

  • MySQL数据库优化之分表分库操作实例详解

    本文实例讲述了MySQL数据库优化之分表分库操作.分享给大家供大家参考,具体如下: 分表分库 垂直拆分 垂直拆分就是要把表按模块划分到不同数据库表中(当然原则还是不破坏第三范式),这种拆分在大型网站的演变过程中是很常见的.当一个网站还在很小的时候,只有小量的人来开发和维护,各模块和表都在一起,当网站不断丰富和壮大的时候,也会变成多个子系统来支撑,这时就有按模块和功能把表划分出来的需求.其实,相对于垂直切分更进一步的是服务化改造,说得简单就是要把原来强耦合的系统拆分成多个弱耦合的服务,通过服务间的

  • mysql分表分库的应用场景和设计方式

    很多朋友在论坛和留言区域问mysql在什么情况下才需要进行分库分表,以及采用何种设计方式才是最优的选择,根据这些问题,小编为大家整理了关于MySQL分库分表的应用场景和最优的设计方式举例. 一. 分表 场景:对于大型的互联网应用来说,数据库单表的记录行数可能达到千万级甚至是亿级,并且数据库面临着极高的并发访问.采用Master-Slave复制模式的MySQL架构, 只能够对数据库的读进行扩展,而对数据库的写入操作还是集中在Master上,并且单个Master挂载的Slave也不可能无限制多,Sl

  • MySQL 分表分库怎么进行数据切分

    关系型数据库本身比较容易成为系统瓶颈,单机存储容量.连接数.处理能力都有限.当单表的数据量达到1000W或100G以后,由于查询维度较多,即使添加从库.优化索引,做很多操作时性能仍下降严重.此时就要考虑对其进行切分了,切分的目的就在于减少数据库的负担,缩短查询时间. 数据库分布式核心内容无非就是数据切分(Sharding)以及切分后对数据的定位.整合.数据切分就是将数据分散存储到多个数据库中,使得单一数据库中的数据量变小,通过扩充主机的数量缓解单一数据库的性能问题,从而达到提升数据库操作性能的目

  • MySql分表、分库、分片和分区知识点介绍

    一.前言 数据库的数据量达到一定程度之后,为避免带来系统性能上的瓶颈.需要进行数据的处理,采用的手段是分区.分片.分库.分表. 二.分片(类似分库) 分片是把数据库横向扩展(Scale Out)到多个物理节点上的一种有效的方式,其主要目的是为突破单节点数据库服务器的 I/O 能力限制,解决数据库扩展性问题.Shard这个词的意思是"碎片".如果将一个数据库当作一块大玻璃,将这块玻璃打碎,那么每一小块都称为数据库的碎片(DatabaseShard).将整个数据库打碎的过程就叫做分片,可以

  • MySql分表、分库、分片和分区知识深入详解

    一.前言 数据库的数据量达到一定程度之后,为避免带来系统性能上的瓶颈.需要进行数据的处理,采用的手段是分区.分片.分库.分表. 二.分片(类似分库) 分片是把数据库横向扩展(Scale Out)到多个物理节点上的一种有效的方式,其主要目的是为突破单节点数据库服务器的 I/O 能力限制,解决数据库扩展性问题.Shard这个词的意思是"碎片".如果将一个数据库当作一块大玻璃,将这块玻璃打碎,那么每一小块都称为数据库的碎片(DatabaseShard).将整个数据库打碎的过程就叫做分片,可以

  • 超大数据量存储常用数据库分表分库算法总结

    当一个应用的数据量大的时候,我们用单表和单库来存储会严重影响操作速度,如mysql的myisam存储,我们经过测试,200w以下的时候,mysql的访问速度都很快,但是如果超过200w以上的数据,他的访问速度会急剧下降,影响到我们webapp的访问速度,而且数据量太大的话,如果用单表存储,就会使得系统相当的不稳定,mysql服务很容易挂掉.所以当数据量超过200w的时候,建议系统工程师还是考虑分表. 以下是几种常见的分表算法. 1.按自然时间来分表/分库; 如一个应用的数据在一年后数据量会达到2

  • .NET Core实现分表分库、读写分离的通用 Repository功能

    首先声明这篇文章不是标题党,我说的这个类库是 FreeSql.Repository,它作为扩展库现实了通用仓储层功能,接口规范参考 abp vnext 定义,实现了基础的仓储层(CURD). 安装 dotnet add package FreeSql.Repository 可用于:.net framework 4.6+..net core 2.1+ 定义 var fsql = new FreeSql.FreeSqlBuilder() .UseConnectionString(FreeSql.Da

  • 使用ShardingSphere-Proxy实现分表分库

    目录 1.环境准备 2.数据库脚本准备 3.配置ShardingSphere-Proxy 分表原理解析 参考:Sharding-Proxy的基本功能使用 1. 环境准备 MySql 5.7 apache-shardingsphere-4.1.1-sharding-proxy-bin.tar.gz jdk 1.8 mysql-connector-java-5.1.49.jar 2. 数据库脚本准备 # 创建商品数据库 CREATE DATABASE IF NOT EXISTS `products`

  • .Net极限生产力之分表分库全自动化Migrations Code-First

    目录 开始 移除静态容器 原生efcore 启动程序 添加todo字段并迁移 集成AbpVNext 新建两个接口用于赋值创建时间和guid AbpDbContext抽象类 新增分库分表路由 编写sqlserver分片迁移脚本生成 abp的efcore模块注入 启动abp迁移项目 集成Furion 新增todoitem 新增分表分库路由 新增分表路由 编写迁移文件 启动注入 添加迁移文件 集成WTM 添加依赖 新增分表分库路由 创建DbContextCreator 静态构造IShardingRun

  • mysql分表和分区的区别浅析

    一.什么是mysql分表和分区 什么是分表,从表面意思上看呢,就是把一张表分成N多个小表 什么是分区,分区呢就是把一张表的数据分成N多个区块,这些区块可以在同一个磁盘上,也可以在不同的磁盘上 二.mysql分表和分区有什么区别呢 1.实现方式上 a)mysql的分表是真正的分表,一张表分成很多表后,每一个小表都是完正的一张表,都对应三个文件,一个.MYD数据文件,.MYI索引文件,.frm表结构文件. 复制代码 代码如下: [root@BlackGhost test]# ls |grep use

随机推荐