python矩阵运算,转置,逆运算,共轭矩阵实例

我就废话不多说了,大家还是直接看代码吧!

#先定义两个矩阵
X=np.array([[1,2104,5,1,45],[1,1416,3,2,40],[1,1534,3,2,30],[1,852,2,1,36]])

y=np.array([45,40,30,36])
#内积以后发现
c=np.dot(X.T,X)
c
array([[  4, 5906,  13,  6,  151],
  [ 5906, 9510932, 21074, 8856, 228012],
  [  13, 21074,  47,  19,  507],
  [  6, 8856,  19,  10,  221],
  [ 151, 228012,  507,  221, 5821]])
c.I
d=np.dot(c.I,X.T)
Traceback (most recent call last):

 File "<ipython-input-59-5f34dde97959>", line 1, in <module>
 d=np.dot(c.I,X.T)

AttributeError: 'numpy.ndarray' object has no attribute 'I'

#说明array进行内积以后已经不是array对象,成为ndarray对象,不能再进行.I,.T,.M的操作。
#解决方法:把结果转为matrix就可以
a=np.matrix([[  4, 5906,  13,  6,  151],
  [ 5906, 9510932, 21074, 8856, 228012],
  [  13, 21074,  47,  19,  507],
  [  6, 8856,  19,  10,  221],
  [ 151, 228012,  507,  221, 5821]])

a.I
matrix([[ -4.12181049e+13, 1.93633440e+11, -8.76643127e+13,
   -3.06844458e+13, 2.28487459e+12],
  [ 1.93633440e+11, -9.09646601e+08, 4.11827338e+11,
   1.44148665e+11, -1.07338299e+10],
  [ -8.76643127e+13, 4.11827338e+11, -1.86447963e+14,
   -6.52609055e+13, 4.85956259e+12],
  [ -3.06844458e+13, 1.44148665e+11, -6.52609055e+13,
   -2.28427584e+13, 1.70095424e+12],
  [ 2.28487459e+12, -1.07338299e+10, 4.85956259e+12,
   1.70095424e+12, -1.26659193e+11]])

补充知识:矩阵和向量共轭

矩阵包括实数矩阵复数矩阵

矩阵的转置是将其行列互换位置,

矩阵的共轭转置则是在矩阵转置的基础上(行列互换位置)对其每一个元素取共轭。

形如 a+bi的复数,其共轭为a-bi。实数的共轭等于它本身。

所以,实数矩阵的共轭转置矩阵就是转置矩阵,复数矩阵的共轭转置矩阵就是行列互换位置后每个元素取共轭。

在Fortran中,其调用函数为:


CONJG(x)


求x的共轭复数。x:C, 结果:C

以上这篇python矩阵运算,转置,逆运算,共轭矩阵实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python 矩阵转置的几种方法小结

    我就废话不多说了,直接上代码吧! #Python的matrix转置 matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12]] def printmatrix(m): for ele in m: for i in ele: print("%2d" %i,end = " ") print() #1.利用元祖的特性进行转置 def transformMatrix(m): #此处巧妙的先按照传递的元祖m的列数,生成了r的行数 r = [[] f

  • Python 使用Numpy对矩阵进行转置的方法

    如下所示: matrix.py #!/usr/bin/python # -*- encoding:UTF-8-*- import pprint import numpy as np matrix = [[1,2],[3,4],[5,6]] print('列表:') pprint.pprint(matrix) matrix_2 = np.matrix(matrix) print('原矩阵:') pprint.pprint(matrix_2) matrix_transpose = np.transp

  • python对矩阵进行转置的2种处理方法

    方法一 :使用常规的思路 def transpose(M): # 初始化转置后的矩阵 result = [] # 获取转置前的行和列 row, col = shape(M) # 先对列进行循环 for i in range(col): # 外层循环的容器 item = [] # 在列循环的内部进行行的循环 for index in range(row): item.append(M[index][i]) result.append(item) return result 思路:矩阵的转置就是从行

  • python矩阵运算,转置,逆运算,共轭矩阵实例

    我就废话不多说了,大家还是直接看代码吧! #先定义两个矩阵 X=np.array([[1,2104,5,1,45],[1,1416,3,2,40],[1,1534,3,2,30],[1,852,2,1,36]]) y=np.array([45,40,30,36]) #内积以后发现 c=np.dot(X.T,X) c array([[ 4, 5906, 13, 6, 151], [ 5906, 9510932, 21074, 8856, 228012], [ 13, 21074, 47, 19,

  • 对python 矩阵转置transpose的实例讲解

    在读图片时,会用到这么的一段代码: image_vector_len = np.prod(image_size)#总元素大小,3*55*47 img = Image.open(path) arr_img = np.asarray(img, dtype='float64') arr_img = arr_img.transpose(2,0,1).reshape((image_vector_len, ))# 47行,55列,每个点有3个元素rgb.再把这些元素一字排开 transpose是什么意识呢?

  • python矩阵的转置和逆转实例

    如下所示: # 矩阵的转置 def transpose(list1): return [list(row) for row in zip(*list1)] list1 = [[1, 4], [2, 5], [3, 6]] print(transpose(list1)) # [[1, 2, 3], [4, 5, 6]] 矩阵转置 用zip将一系列可迭代对象中的元素打包为元组,之后将这些元组放置在列表中,两步加起来等价于行列转置. # 矩阵逆转 def invert(list1): return [

  • Python 存取npy格式数据实例

    数据处理的时候主要通过两个函数 (1):np.save("test.npy",数据结构) ----存数据 (2):data =np.load('test.npy") ----取数据 给2个例子如下(存列表) 1. z = [[[1, 2, 3], ['w']], [[1, 2, 3], ['w']]] np.save('test.npy', z) x = np.load('test.npy') x: ->array([[list([1, 2, 3]), list(['w

  • Python 通过URL打开图片实例详解

    Python 通过URL打开图片实例详解 不论是用OpenCV还是PIL,skimage等库,在之前做图像处理的时候,几乎都是读取本地的图片.最近尝试爬虫爬取图片,在保存之前,我希望能先快速浏览一遍图片,然后有选择性的保存.这里就需要从url读取图片了.查了很多资料,发现有这么几种方法,这里做个记录. 本文用到的图片URL如下: img_src = 'http://wx2.sinaimg.cn/mw690/ac38503ely1fesz8m0ov6j20qo140dix.jpg' 1.用Open

  • Python创建二维数组实例(关于list的一个小坑)

    0.目录 1.遇到的问题 2.创建二维数组的办法 •3.1 直接创建法 •3.2 列表生成式法 •3.3 使用模块numpy创建 1.遇到的问题 今天写Python代码的时候遇到了一个大坑,差点就耽误我交作业了... 问题是这样的,我需要创建一个二维数组,如下: m = n = 3 test = [[0] * m] * n print("test =", test) 输出结果如下: test = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] 是不是看起来没有一点问

  • python 生成器协程运算实例

    一.yield运行方式 我们定义一个如下的生成器: def put_on(name): print("Hi {}, 货物来了,准备搬到仓库!".format(name)) while True: goods = yield print("货物[%s]已经被%s搬进仓库了."%(goods,name)) p = put_on("bigberg") #输出 G:\python\install\python.exe G:/python/untitled

  • Python命令启动Web服务器实例详解

    Python命令启动Web服务器实例详解 利用Python自带的包可以建立简单的web服务器.在DOS里cd到准备做服务器根目录的路径下,输入命令: python -m Web服务器模块 [端口号,默认8000] 例如: python -m SimpleHTTPServer 8080 然后就可以在浏览器中输入 http://localhost:端口号/路径 来访问服务器资源. 例如: http://localhost:8080/index.htm(当然index.htm文件得自己创建) 其他机器

  • 理解Python中的类与实例

    面向对象最重要的概念就是类(Class)和实例(Instance),必须牢记类是抽象的模板,比如Student类,而实例是根据类创建出来的一个个具体的"对象",每个对象都拥有相同的方法,但各自的数据可能不同. 仍以Student类为例,在Python中,定义类是通过class关键字: class Student(object): pass class后面紧接着是类名,即Student,类名通常是大写开头的单词,紧接着是(object),表示该类是从哪个类继承下来的,继承的概念我们后面再

  • 常见python正则用法的简单实例

    下面列出Python正则表达式的几种匹配用法: 1.测试正则表达式是否匹配字符串的全部或部分 regex=ur"" #正则表达式 if re.search(regex, subject): do_something() else: do_anotherthing() 2.测试正则表达式是否匹配整个字符串 regex=ur"\Z" #正则表达式末尾以\Z结束 if re.match(regex, subject):     do_something() else:  

随机推荐