Python绘制地图神器folium的新人入门指南

一、简介

想通过 Python 绘制精美的地图?想在地图上自由的设置各种参数?想获得灵活的交互体验?这里就有一款Python 神包满足你:folium

folium 建立在 Python 生态系统的数据应用能力和 Leaflet.js 库的映射能力之上,在Python中操作数据,然后通过 folium 在 Leaflet 地图中可视化。

folium 相比较于国内百度的 pyecharts 灵活性更强,能够自定义绘制区域,并且展现形式更加多样化。

附:官方文档官方示例本文 notebook完整代码及数据

二、安装方法

按照官方的教程即可,如果安装了 conda ,可以直接

conda install -c conda-forge folium

没有安装的话就使用

python3 -m pip install folium

三、主要功能

3.1 各级别地图

folium 显示地图的类为 folium.Map,类的声明如下

class folium.folium.Map(location=None, width='100%', height='100%', left='0%', top='0%', position='relative', tiles='OpenStreetMap', attr=None, min_zoom=0, max_zoom=18, zoom_start=10, min_lat=-90, max_lat=90, min_lon=-180, max_lon=180, max_bounds=False, crs='EPSG3857', control_scale=False, prefer_canvas=False, no_touch=False, disable_3d=False, png_enabled=False, zoom_control=True, **kwargs)

讲几个重要的参数

  • location 经纬度,list 或者 tuple 格式,顺序为 latitude, longitude
  • zoom_start 缩放值,默认为 10,值越大比例尺越小,地图放大级别越大
  • tiles 显示样式,默认*‘OpenStreetMap'*,也就是开启街道显示
  • crs 地理坐标参考系统,默认为"EPSG3857"

3.1.1 世界地图

import folium

print(folium.__version__)

# define the world map
world_map = folium.Map()
# display world map
world_map

3.1.2 国家地图

# define the national map
national_map = folium.Map(location=[35.3, 100.6], zoom_start=4)
# display national map
national_map

3.1.3 市级地图

其实改变地图显示就是改变显示的经纬度和缩放比例,省级、市级、县级用法雷同,这里举一个市级的例子为例,如北京市:

# define the city map
city_map = folium.Map(location=[39.93, 116.40], zoom_start=10)
# display city map
city_map

显示效果确实是不如百度的😓。

3.2 地图形式

除了上述正常的地图显示外,folium 还提供了非常丰富的多样化显示,控制显示效果的变量是tiles,样式有OpenStreetMap, Stamen Terrain, Stamen Toner, Mapbox Bright, Mapbox Control Room等等,这里挑选几个比较常见的

# define the city map,tiles='Stamen Toner'
city_map = folium.Map(location=[39.93, 116.40], zoom_start=10, tiles='Stamen Toner')
# display city map
city_map
# define the city map, tiles='Stamen Terrain'
city_map = folium.Map(location=[39.93, 116.40], zoom_start=10, tiles='Stamen Terrain')
# display city map
city_map

3.3 在地图上标记

3.3.1 普通标记

添加普通标记用 Marker

这里可以选择标记的图案。

bj_map = folium.Map(location=[39.93, 115.40], zoom_start=12, tiles='Stamen Terrain')

folium.Marker(
    location=[39.95, 115.33],
    popup='Mt. Hood Meadows',
    icon=folium.Icon(icon='cloud')
).add_to(bj_map)

folium.Marker(
    location=[39.96, 115.32],
    popup='Timberline Lodge',
    icon=folium.Icon(color='green')
).add_to(bj_map)

folium.Marker(
    location=[39.93, 115.34],
    popup='Some Other Location',
    icon=folium.Icon(color='red', icon='info-sign')
).add_to(bj_map)

bj_map

添加圆形标记用 Circle 以及 CircleMarker

bj_map = folium.Map(location=[39.93, 116.40], zoom_start=12, tiles='Stamen Toner')

folium.Circle(
    radius=200,
    location=[39.92, 116.43],
    popup='The Waterfront',
    color='crimson',
    fill=False,
).add_to(bj_map)

folium.CircleMarker(
    location=[39.93, 116.38],
    radius=50,
    popup='Laurelhurst Park',
    color='#3186cc',
    fill=True,
    fill_color='#3186cc'
).add_to(bj_map)

bj_map

3.3.2 点击获取经纬度

m = folium.Map(location=[46.1991, -122.1889],tiles='Stamen Terrain',zoom_start=13)

m.add_child(folium.LatLngPopup())

m

通过点击鼠标便可以获取点击出的经纬度。

3.3.3 动态放置标记

m = folium.Map(
    location=[46.8527, -121.7649],
    tiles='Stamen Terrain',
    zoom_start=13
)

folium.Marker(
    [46.8354, -121.7325],
    popup='Camp Muir'
).add_to(m)

m.add_child(folium.ClickForMarker(popup='Waypoint'))

m

3.4 热力图绘制

因为没有实际的经纬度坐标数据,所以这里只能模拟一些位置出来,另外每个位置还需要一个数值作为热力值。

# generated data
import numpy as np
data = (
    np.random.normal(size=(100, 3)) *
    np.array([[0.1, 0.1, 0.1]]) +
    np.array([[40, 116.5, 1]])
).tolist()
data[:3]

数据分布

[[40.04666663299843, 116.59569796477264, 0.9667425547098781],
 [39.86836537517533, 116.28201445195315, 0.8708549157348728],
 [40.08123232852134, 116.56884585184197, 0.9104952244371285]]

绘制热力图

# HeatMap
from folium.plugins import HeatMap
m = folium.Map([39.93, 116.38], tiles='stamentoner', zoom_start=6)
HeatMap(data).add_to(m)
# m.save(os.path.join('results', 'Heatmap.html'))
m

3.5 密度地图绘制

folium 不仅可以绘制热力图,还可以绘制密度地图,按照经纬度进行举例聚类,然后在地图中显示。

from folium.plugins import MarkerCluster

m = folium.Map([39.93, 116.38], tiles='stamentoner', zoom_start=10)

# create a mark cluster object
marker_cluster = MarkerCluster().add_to(m)

# add data point to the mark cluster
for lat, lng, label in data:
    folium.Marker(
        location=[lat, lng],
        icon=None,
        popup=label,
    ).add_to(marker_cluster)

# add marker_cluster to map
m.add_child(marker_cluster)

3.6 自定义地图区域

folium 一个非常有优势的功能就是自定义区域的绘制了,只要有区域的边界数据,就可以在地图中以多种多样的形式展现出来,这里以 folium 官方的美国地图为例,源数据是一个 .json 文件,里面包含了各个地区(美国各州)的特征(包括边界经纬度列表、简称等),源数据传送门,其数据格式如下:

3.6.1 只绘制边界,不添加数据

如果只要求绘制边界,而不显示边界区域的相关信息,那么这个是比较容易的,代码如下

import json
import requests

# read us-states border
with open("us-states.json") as f:
    us_states = json.load(f)

us_map = folium.Map(location=[35.3, -97.6], zoom_start=4)
folium.GeoJson(
    us_states,
    style_function=lambda feature: {
        'fillColor': '#ffff00',
        'color': 'black',
        'weight': 2,
        'dashArray': '5, 5'
    }
).add_to(us_map)

#display map
us_map

3.6.2 绘制边界,添加数据

当需要在各个区域填充数据的时候,这个稍微麻烦点,不仅需要各个区域的边界数据,还需要各个区域的显示信息,这里同样也使用官方的美国各州的边界数据为例:

import geopandas as gpd
import pandas as pd
import folium, branca

states = gpd.GeoDataFrame.from_features(us_states, crs=fiona.crs.from_epsg(4326))
states.head()

我们再把收入等数据连接到上表中

abbrs = pd.read_json(open("abbrs.json"))
statesmerge = states.merge(abbrs,how='left', left_on='name', right_on='name')
statesmerge['geometry']=statesmerge.geometry.simplify(.05)
income = pd.read_csv("income.csv", dtype={"fips":str})
income['income-2015']=pd.to_numeric(income['income-2015'], errors='coerce')
income.groupby(by="state")[['state','income-2015']].median().head()
statesmerge['medianincome']=statesmerge.merge(income.groupby(by="state")[['state','income-2015']].median(), how='left', left_on='alpha-2', right_on='state')['income-2015']
statesmerge['change']=statesmerge.merge(income.groupby(by="state")[['state','change']].median(), how='left', left_on='alpha-2', right_on='state')['change']
statesmerge.head()

最终绘制出的来的地图如下:

除此之外,还有很多非常有趣的功能,这里就不一一列举了,感兴趣的可以参考官方的文档。

四、竞品对比与优劣势

国内的竞品为百度的 pyecharts,和 folium一样都可以实现普通的地图绘制功能,但是具体使用还有较大的区别,具体如下表

功能 pyecharts folium 备注
世界地图 可以 可以
中文显示 可以 部分可以 folium地图中标尺、文字不能正常显示,但是嵌入地图中的中文可以正常显示
交互性
区(县)级地图 可以 可以 folium需要区(县)边界数据
市级地图 可以 可以 folium需要市边界数据
收费 自定义区域需要购买百度ak 自定义区域功能免费
灵活性
省级地图 可以 可以 folium需要省边界数据
美观度 较好
自定义区域 部分可以 可以 pyecharts需要百度 ak,folium免费

五、参考资料

[1] https://www.zhihu.com/question/33783546

[2] https://pypi.org/project/folium/

[3] https://nbviewer.jupyter.org/github/python-visualization/folium/tree/master/examples/

到此这篇关于Python绘制地图神器folium的文章就介绍到这了,更多相关Python绘制地图folium内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python 使用folium绘制leaflet地图的实现方法

    leaflet为R语言提供了API很好用,这次尝试用Python使用leaflet,需要folium 安装folium pip install folium 一个小例子 import folium import re input = open('C:\\Users\\Administrator\\Desktop\\a.txt','r') text=input.read() list = re.split('\n',text) location = [] for element in list:

  • python使用folium库绘制地图点击框

    python使用folium 库生成地图网页的具体代码,供大家参考,具体内容如下 folium 官网 import folium import pandas as pd def mark_map(data): """ 带有标注的地图 :param data: :return: """ # 地图制作 myMap = folium.Map(location=[20, 0], tiles="Mapbox Bright", zoom_

  • python-地图可视化组件folium的操作

    folium是python的一个用来绘制地图,并在地图上打点,画圈,做颜色标记的工具类.简单易学,和pandas可以很好的融合,是居家必备良品. 一 基本功能演示 import folium import webbrowser m=folium.Map(location=[40.009867,116.485994],zoom_start=10) # 绘制地图,确定聚焦点 folium.Marker([40.2,116.7],popup='<b>浮标上面的那个文字</b>').add

  • Python绘制地图神器folium的新人入门指南

    一.简介 想通过 Python 绘制精美的地图?想在地图上自由的设置各种参数?想获得灵活的交互体验?这里就有一款Python 神包满足你:folium. folium 建立在 Python 生态系统的数据应用能力和 Leaflet.js 库的映射能力之上,在Python中操作数据,然后通过 folium 在 Leaflet 地图中可视化. folium 相比较于国内百度的 pyecharts 灵活性更强,能够自定义绘制区域,并且展现形式更加多样化. 附:官方文档,官方示例,本文 notebook

  • Python实现地图可视化folium完整过程

    目录 Folium简介 1.安装folium模块 2.安装jupyter 3.查看世界地图 4.查看中国地图 5.武汉市地图 6.添加标记 7.查找武汉科技大学 8.未解决 9.参考文章 Folium简介 Folium是一个基于leaflet.js的Python地图库,其中,Leaflet是一个非常轻的前端地图可视化库.即可以使用Python语言调用Leaflet的地图可视化能力.它不单单可以在地图上展示数据的分布图,还可以使用Vincent/Vega在地图上加以标记.Folium可以让你用Py

  • Python地理地图可视化folium标记点弹窗设置代码(推荐)

    python代码如下: import webbrowser as wb import folium if __name__ == '__main__': loc = [30.679943, 104.067923] # 成都中心位置经纬度 map = folium.Map(location=loc, zoom_start=11, zoom_control=True, tiles='OpenStreetMap') # 默认OpenStreetMap s1 = '地理位置标记点上的弹出窗口,展示标记点

  • Python中定时任务框架APScheduler的快速入门指南

    前言 大家应该都知道在编程语言中,定时任务是常用的一种调度形式,在Python中也涌现了非常多的调度模块,本文将简要介绍APScheduler的基本使用方法. 一.APScheduler介绍 APScheduler是基于Quartz的一个python定时任务框架,实现了Quartz的所有功能,使用起来十分方便.提供了基于日期.固定时间间隔以及crontab类型的任务,并且可以持久化任务. APScheduler提供了多种不同的调度器,方便开发者根据自己的实际需要进行使用:同时也提供了不同的存储机

  • 利用python绘制中国地图(含省界、河流等)

    我们可以使用Basemap这个工具包来实现中国地图的绘制 首先需要加载一些包: import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap Basemap包就是气象画图的利器,现在我们就可以愉快的画图了! plt.figure(1) map=Basemap() map.drawcoastlines() plt.title(r'$World\ Map$',fontsize=2

  • python用folium绘制地图并设置弹窗效果

    目录 python–Folium basic example Markers 标记样式修改 标记圆形区域 实战 python–Folium 官方说明:folium.link. map用于生成地图,主要用到黄色的参数 Map(location=None, width='100%', height='100%', left='0%', top='0%', position='relative', tiles='OpenStreetMap', attr=None, min_zoom=0, max_zo

  • Python绘制地理图表可视化神器pyecharts

    目录 地图 地图模板系列 中国地图 省份数据地图(重庆地图) 中国城市地图数据地图(分段型) 世界地图 中国地图带城市(详细) 中国连续数据地图 复杂地图观赏 地图 这期文章我们一起来看看地图是如何绘制的,如何在地图里面添加数据进行多维度的展示,下面我们一起来感受一下地图的魅力吧! “地图就是依据一定的数学法则,使用制图语言,通过制图综合,在一定的载体上,表达地球(或其他天体)上各种事物的空间分布.联系及时间中的发展变化状态的图形. 地图的特征包括:由于特殊的数学法则而产生的可量测性:由于使用符

  • Python如何使用bokeh包和geojson数据绘制地图

    最近要绘制伦敦区地图,查阅了很多资料后最终选择使用bokeh包以及伦敦区的geojson数据绘制. bokeh是基于python的绘图工具,可以绘制各种类型的图表,支持geojson数据的读取及绘制地图. 安装bokeh $ pip install bokeh 软件版本 python-3.7.7bokeh-2.0.0 数据来源 伦敦地图数据来源于Highmaps地图数据集.下载的是英国的地图数据united-kindom.geo.json.需要对得到的数据进行预处理才能得到只含伦敦地区的数据.这

  • Python绘制全球疫情变化地图的实例代码

    目前全球疫情仍然比较严重,为了能清晰地看到疫情爆发以来至现在全球疫情的变化趋势,我绘制了一张疫情变化地图. 废话不多说,先上图 下面就来重点介绍下上面这张图的绘制过程,主要分为以下三个步骤: 数据收集 数据处理 画图 下面一个一个来说. 数据收集 这是万里长城的第一步,俗话说"巧妇难为无米之炊",既然是变化图,当然需要每个国家.每天的现有确诊病例数.好在现在各大网站都有疫情相关的专题页,我们可以直接抓数据.以网易为例 我们选择 XHR,重新刷新下网页可以看到有几个接口,其中 list-

  • Python绘制词云图之可视化神器pyecharts的方法

    自定义图片生成词云图的多种方法 有时候我们会根据具体的场景来结合图片展示词云,比如我分析的是美团评论,那么最好的展示方法就是利用美团的logo来做词云图的底图展示,下面我们就介绍几种常用的方法! 根据喜爱的图片生成词云轮廓 from wordcloud import WordCloud import jieba import matplotlib.pyplot as plt import numpy as np import PIL.Image as Image text = open(u'da

随机推荐