python中用ggplot绘制画图实例讲解

Python的绘图库也允许用户创建优雅的图形,本章给大家介绍的是关于ggplot绘制画图的技巧,ggplot2建立在grid系统上,这个系统不支持纹理。需要额外创建一堆数据,再基于这些数据构建一个geom_path图层,盖在柱图上才可以进行各种绘制,下面给大家详细讲解下怎么使用ggplot绘图。

简介:

ggplot类是在plotnine中的,能够生成一个图形。

安装:

pip install pandas plotnine

csv文件加载到survs_df的数据框架:

ggplot(survs_df, aes(x='weight', y='hindfoot_length',
size = 'year')) + geom_point()

生成图形步骤:

1、设置数据框

2、需要将数据框架转换成位置、颜色、大小等

3、显示实际图形元素

实例代码:

(ggplot(mtcars, aes(‘wt', ‘mpg', color='factor(cyl)'))
+ geom_point()
+ labs(title='Miles per gallon vs Weight', x='Weight', y='Miles per gallon')
+ guides(color=guide_legend(title='Number of Cylinders')) )

输出效果:

知识点扩展:

绘制散点图,geom_point()

读取外部数据进行绘图

>>> import pandas as pd
>>> from ggplot import *
>>> df=pd.read_table('C:\Users\lenovo\Desktop\mtcars.txt')
>>> df
··name type number volume size other
0 td T 96 3 20 c
1 sf F 87 5 65 c
2 cc F 79 9 80 d

如果读取的数据没有column可以添加

df.columns=['name','type','number','volume','size','other']
>>> p=ggplot(df, aes(x='number', y='volume', size='factor(size)', color='factor(other)'))+geom_point()
>>> print p

到此这篇关于python中用ggplot绘制画图实例讲解的文章就介绍到这了,更多相关python中ggplot怎么绘制画图内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 在Python中调用ggplot的三种方法

    本文提供了三种不同的方式在Python(IPython Notebook)中调用ggplot. 在大数据时代,数据可视化是一个非常热门的话题.各个BI的厂商无不在数据可视化领域里投入大量的精力.Tableau凭借其强大的数据可视化的功能成为硅谷炙手可热的上市公司.Tableau的数据可视化的产品,其理论基础其实是<The Grammar of Graphic>,该书提出了对信息可视化的图表的语法抽象体系,数据的探索和分析可以由图像的语法来驱动,而非有固定的图表类型来驱动,使得数据的探索过程变得

  • python中用ggplot绘制画图实例讲解

    Python的绘图库也允许用户创建优雅的图形,本章给大家介绍的是关于ggplot绘制画图的技巧,ggplot2建立在grid系统上,这个系统不支持纹理.需要额外创建一堆数据,再基于这些数据构建一个geom_path图层,盖在柱图上才可以进行各种绘制,下面给大家详细讲解下怎么使用ggplot绘图. 简介: ggplot类是在plotnine中的,能够生成一个图形. 安装: pip install pandas plotnine csv文件加载到survs_df的数据框架: ggplot(survs

  • Python中用xlwt制作表格实例讲解

    在Python中,我们也可以用xlwt来制作excel表格,是不是很神奇,接下来一起学习吧. 举例: import xlwt wb = xlwt.Workbook(encoding = 'ascii') #创建实例,并且规定编码 ws = wb.add_sheet('My Worksheet') #设置工作表名称 ws.write(0,0,'first') #向表格中插入字符串,前两位数字分别为行和列,第三个参数为要插入的内容,第四个参数可以设置样式 wb.save('test.xls') #将

  • Python创建简单的神经网络实例讲解

    在过去的几十年里,机器学习对世界产生了巨大的影响,而且它的普及程度似乎在不断增长.最近,越来越多的人已经熟悉了机器学习的子领域,如神经网络,这是由人类大脑启发的网络.在本文中,将介绍用于一个简单神经网络的 Python 代码,该神经网络对于一个 1x3 向量,分类第一个元素是否为 10. 步骤1: 导入 NumPy. Scikit-learn 和 Matplotlib import numpy as np from sklearn.preprocessing import MinMaxScale

  • python模块之time模块(实例讲解)

    time 表示时间的三种形式 时间戳(timestamp) :通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量.我们运行"type(time.time())",返回的是float类型. 格式化的时间字符串(Format String): '1999-12-06' 时间格式化符号 ''' %y 两位数的年份表示(00-99) %Y 四位数的年份表示(000-9999) %m 月份(01-12) %d 月内中的一天(0-31) %H 24小时制小时数(0-2

  • python数据结构之链表的实例讲解

    在程序中,经常需要将⼀组(通常是同为某个类型的)数据元素作为整体 管理和使⽤,需要创建这种元素组,⽤变量记录它们,传进传出函数等. ⼀组数据中包含的元素个数可能发⽣变化(可以增加或删除元素). 对于这种需求,最简单的解决⽅案便是将这样⼀组元素看成⼀个序列,⽤ 元素在序列⾥的位置和顺序,表示实际应⽤中的某种有意义的信息,或者 表示数据之间的某种关系. 这样的⼀组序列元素的组织形式,我们可以将其抽象为线性表.⼀个线性 表是某类元素的⼀个集合,还记录着元素之间的⼀种顺序关系.线性表是 最基本的数据结构

  • Python网络爬虫与信息提取(实例讲解)

    课程体系结构: 1.Requests框架:自动爬取HTML页面与自动网络请求提交 2.robots.txt:网络爬虫排除标准 3.BeautifulSoup框架:解析HTML页面 4.Re框架:正则框架,提取页面关键信息 5.Scrapy框架:网络爬虫原理介绍,专业爬虫框架介绍 理念:The Website is the API ... Python语言常用的IDE工具 文本工具类IDE: IDLE.Notepad++.Sublime Text.Vim & Emacs.Atom.Komodo E

  • Python数据处理numpy.median的实例讲解

    numpy模块下的median作用为: 计算沿指定轴的中位数 返回数组元素的中位数 其函数接口为: median(a, axis=None, out=None, overwrite_input=False, keepdims=False) 其中各参数为: a:输入的数组: axis:计算哪个轴上的中位数,比如输入是二维数组,那么axis=0对应行,axis=1对应列: out:用于放置求取中位数后的数组. 它必须具有与预期输出相同的形状和缓冲区长度: overwrite_input:一个bool

  • python增加矩阵维度的实例讲解

    numpy.expand_dims(a, axis) Examples >>> x = np.array([1,2]) >>> x.shape (2,) >>> y = np.expand_dims(x, axis=0) >>> y array([[1, 2]]) >>> y.shape (1, 2) >>> y = np.expand_dims(x, axis=1) # Equivalent to

  • 对Python 网络设备巡检脚本的实例讲解

    1.基本信息 我公司之前采用的是人工巡检,但奈何有大量网络设备,往往巡检需要花掉一上午(还是手速快的话),浪费时间浪费生命. 这段时间正好在学 Python ,于是乎想(其)要(实)解(就)放(是)双(懒)手. 好了,脚本很长又比较挫,有耐心就看看吧. 需要巡检的设备如下: 设备清单 设备型号 防火墙 华为 E8000E H3C M9006 飞塔 FG3950B 交换机 华为 S9306 H3C S12508 Cisco N7K 路由器 华为 NE40E 负载 Radware RD5412 Ra

  • 对python 矩阵转置transpose的实例讲解

    在读图片时,会用到这么的一段代码: image_vector_len = np.prod(image_size)#总元素大小,3*55*47 img = Image.open(path) arr_img = np.asarray(img, dtype='float64') arr_img = arr_img.transpose(2,0,1).reshape((image_vector_len, ))# 47行,55列,每个点有3个元素rgb.再把这些元素一字排开 transpose是什么意识呢?

随机推荐