python神经网络Inception ResnetV2模型复现详解

目录
  • 什么是Inception ResnetV2
  • Inception-ResNetV2的网络结构
    • 1、Stem的结构:
    • 2、Inception-resnet-A的结构:
    • 3、Inception-resnet-B的结构:
    • 4、Inception-resnet-C的结构:
  • 全部代码

什么是Inception ResnetV2

Inception ResnetV2是Inception ResnetV1的一个加强版,两者的结构差距不大,如果大家想了解Inception ResnetV1可以看一下我的另一个blog。facenet的神经网络结构就是Inception ResnetV1。

神经网络学习——facenet详解及其keras实现

源码下载

Inception-ResNetV2的网络结构

Inception-ResNetV2和Inception-ResNetV1采用同一个主干网络。

它的结构很有意思!

如图所示为整个网络的主干结构:

可以看到里面的结构分为几个重要的部分

1、stem

2、Inception-resnet-A

3、Inception-resnet-B

4、Inception-resnet-C

1、Stem的结构:

在Inception-ResNetV2里,它的Input为299x299x3大小,输入后进行:三次卷积 -> 最大池化 -> 两次卷积 -> 最大池化 -> 四个分支 -> 堆叠python实现代码如下:

input_shape = [299,299,3]
img_input = Input(shape=input_shape)
# Stem block: 299,299,3 -> 35 x 35 x 192
x = conv2d_bn(img_input, 32, 3, strides=2, padding='valid')
x = conv2d_bn(x, 32, 3, padding='valid')
x = conv2d_bn(x, 64, 3)
x = MaxPooling2D(3, strides=2)(x)
x = conv2d_bn(x, 80, 1, padding='valid')
x = conv2d_bn(x, 192, 3, padding='valid')
x = MaxPooling2D(3, strides=2)(x)
# Mixed 5b (Inception-A block):35 x 35 x 192 -> 35 x 35 x 320
branch_0 = conv2d_bn(x, 96, 1)
branch_1 = conv2d_bn(x, 48, 1)
branch_1 = conv2d_bn(branch_1, 64, 5)
branch_2 = conv2d_bn(x, 64, 1)
branch_2 = conv2d_bn(branch_2, 96, 3)
branch_2 = conv2d_bn(branch_2, 96, 3)
branch_pool = AveragePooling2D(3, strides=1, padding='same')(x)
branch_pool = conv2d_bn(branch_pool, 64, 1)
branches = [branch_0, branch_1, branch_2, branch_pool]
x = Concatenate(name='mixed_5b')(branches)

2、Inception-resnet-A的结构:

Inception-resnet-A的结构分为四个分支

1、未经处理直接输出

2、经过一次1x1的32通道的卷积处理

3、经过一次1x1的32通道的卷积处理和一次3x3的32通道的卷积处理

4、经过一次1x1的32通道的卷积处理、一次3x3的48通道和一次3x3的64通道卷积处理

234步的结果堆叠后进行一次卷积,并与第一步的结果相加,实质上这是一个残差网络结构。

实现代码如下:

branch_0 = conv2d_bn(x, 32, 1)
branch_1 = conv2d_bn(x, 32, 1)
branch_1 = conv2d_bn(branch_1, 32, 3)
branch_2 = conv2d_bn(x, 32, 1)
branch_2 = conv2d_bn(branch_2, 48, 3)
branch_2 = conv2d_bn(branch_2, 64, 3)
branches = [branch_0, branch_1, branch_2]
block_name = block_type + '_' + str(block_idx)
mixed = Concatenate(name=block_name + '_mixed')(branches)
up = conv2d_bn(mixed,K.int_shape(x)[3],1,activation=None,se_bias=True,name=block_name + '_conv')
x = Lambda(lambda inputs, scale: inputs[0] + inputs[1] * scale,
            output_shape=K.int_shape(x)[1:],
            arguments={'scale': scale},
            name=block_name)([x, up])
if activation is not None:
    x = Activation(activation, name=block_name + '_ac')(x)

3、Inception-resnet-B的结构:

Inception-resnet-B的结构分为四个分支

1、未经处理直接输出

2、经过一次1x1的192通道的卷积处理

3、经过一次1x1的128通道的卷积处理、一次1x7的160通道的卷积处理和一次7x1的192通道的卷积处理

23步的结果堆叠后进行一次卷积,并与第一步的结果相加,实质上这是一个残差网络结构。

实现代码如下:

branch_0 = conv2d_bn(x, 192, 1)
branch_1 = conv2d_bn(x, 128, 1)
branch_1 = conv2d_bn(branch_1, 160, [1, 7])
branch_1 = conv2d_bn(branch_1, 192, [7, 1])
branches = [branch_0, branch_1]
block_name = block_type + '_' + str(block_idx)
mixed = Concatenate(name=block_name + '_mixed')(branches)
up = conv2d_bn(mixed,K.int_shape(x)[3],1,activation=None,se_bias=True,name=block_name + '_conv')
x = Lambda(lambda inputs, scale: inputs[0] + inputs[1] * scale,
            output_shape=K.int_shape(x)[1:],
            arguments={'scale': scale},
            name=block_name)([x, up])
if activation is not None:
    x = Activation(activation, name=block_name + '_ac')(x)

4、Inception-resnet-C的结构:

Inception-resnet-B的结构分为四个分支

1、未经处理直接输出

2、经过一次1x1的192通道的卷积处理

3、经过一次1x1的192通道的卷积处理、一次1x3的224通道的卷积处理和一次3x1的256通道的卷积处理

23步的结果堆叠后进行一次卷积,并与第一步的结果相加,实质上这是一个残差网络结构。

实现代码如下:

branch_0 = conv2d_bn(x, 192, 1)
branch_1 = conv2d_bn(x, 192, 1)
branch_1 = conv2d_bn(branch_1, 224, [1, 3])
branch_1 = conv2d_bn(branch_1, 256, [3, 1])
branches = [branch_0, branch_1]
block_name = block_type + '_' + str(block_idx)
mixed = Concatenate(name=block_name + '_mixed')(branches)
up = conv2d_bn(mixed,K.int_shape(x)[3],1,activation=None,se_bias=True,name=block_name + '_conv')
x = Lambda(lambda inputs, scale: inputs[0] + inputs[1] * scale,
            output_shape=K.int_shape(x)[1:],
            arguments={'scale': scale},
            name=block_name)([x, up])
if activation is not None:
    x = Activation(activation, name=block_name + '_ac')(x)

全部代码

import warnings
import numpy as np
from keras.preprocessing import image
from keras.models import Model
from keras.layers import Activation,AveragePooling2D,BatchNormalization,Concatenate
from keras.layers import Conv2D,Dense,GlobalAveragePooling2D,GlobalMaxPooling2D,Input,Lambda,MaxPooling2D
from keras.applications.imagenet_utils import decode_predictions
from keras.utils.data_utils import get_file
from keras import backend as K
BASE_WEIGHT_URL = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.7/'
def conv2d_bn(x,filters,kernel_size,strides=1,padding='same',activation='relu',use_bias=False,name=None):
    x = Conv2D(filters,
               kernel_size,
               strides=strides,
               padding=padding,
               use_bias=use_bias,
               name=name)(x)
    if not use_bias:
        bn_axis = 1 if K.image_data_format() == 'channels_first' else 3
        bn_name = None if name is None else name + '_bn'
        x = BatchNormalization(axis=bn_axis, scale=False, name=bn_name)(x)
    if activation is not None:
        ac_name = None if name is None else name + '_ac'
        x = Activation(activation, name=ac_name)(x)
    return x
def inception_resnet_block(x, scale, block_type, block_idx, activation='relu'):
    if block_type == 'block35':
        branch_0 = conv2d_bn(x, 32, 1)
        branch_1 = conv2d_bn(x, 32, 1)
        branch_1 = conv2d_bn(branch_1, 32, 3)
        branch_2 = conv2d_bn(x, 32, 1)
        branch_2 = conv2d_bn(branch_2, 48, 3)
        branch_2 = conv2d_bn(branch_2, 64, 3)
        branches = [branch_0, branch_1, branch_2]
    elif block_type == 'block17':
        branch_0 = conv2d_bn(x, 192, 1)
        branch_1 = conv2d_bn(x, 128, 1)
        branch_1 = conv2d_bn(branch_1, 160, [1, 7])
        branch_1 = conv2d_bn(branch_1, 192, [7, 1])
        branches = [branch_0, branch_1]
    elif block_type == 'block8':
        branch_0 = conv2d_bn(x, 192, 1)
        branch_1 = conv2d_bn(x, 192, 1)
        branch_1 = conv2d_bn(branch_1, 224, [1, 3])
        branch_1 = conv2d_bn(branch_1, 256, [3, 1])
        branches = [branch_0, branch_1]
    else:
        raise ValueError('Unknown Inception-ResNet block type. '
                         'Expects "block35", "block17" or "block8", '
                         'but got: ' + str(block_type))
    block_name = block_type + '_' + str(block_idx)
    mixed = Concatenate(name=block_name + '_mixed')(branches)
    up = conv2d_bn(mixed,K.int_shape(x)[3],1,activation=None,use_bias=True,name=block_name + '_conv')
    x = Lambda(lambda inputs, scale: inputs[0] + inputs[1] * scale,
               output_shape=K.int_shape(x)[1:],
               arguments={'scale': scale},
               name=block_name)([x, up])
    if activation is not None:
        x = Activation(activation, name=block_name + '_ac')(x)
    return x
def InceptionResNetV2(input_shape=[299,299,3],
                      classes=1000):
    input_shape = [299,299,3]
    img_input = Input(shape=input_shape)
    # Stem block: 299,299,3 -> 35 x 35 x 192
    x = conv2d_bn(img_input, 32, 3, strides=2, padding='valid')
    x = conv2d_bn(x, 32, 3, padding='valid')
    x = conv2d_bn(x, 64, 3)
    x = MaxPooling2D(3, strides=2)(x)
    x = conv2d_bn(x, 80, 1, padding='valid')
    x = conv2d_bn(x, 192, 3, padding='valid')
    x = MaxPooling2D(3, strides=2)(x)
    # Mixed 5b (Inception-A block):35 x 35 x 192 -> 35 x 35 x 320
    branch_0 = conv2d_bn(x, 96, 1)
    branch_1 = conv2d_bn(x, 48, 1)
    branch_1 = conv2d_bn(branch_1, 64, 5)
    branch_2 = conv2d_bn(x, 64, 1)
    branch_2 = conv2d_bn(branch_2, 96, 3)
    branch_2 = conv2d_bn(branch_2, 96, 3)
    branch_pool = AveragePooling2D(3, strides=1, padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1)
    branches = [branch_0, branch_1, branch_2, branch_pool]
    x = Concatenate(name='mixed_5b')(branches)
    # 10次Inception-ResNet-A block:35 x 35 x 320 -> 35 x 35 x 320
    for block_idx in range(1, 11):
        x = inception_resnet_block(x,
                                   scale=0.17,
                                   block_type='block35',
                                   block_idx=block_idx)
    # Reduction-A block:35 x 35 x 320 -> 17 x 17 x 1088
    branch_0 = conv2d_bn(x, 384, 3, strides=2, padding='valid')
    branch_1 = conv2d_bn(x, 256, 1)
    branch_1 = conv2d_bn(branch_1, 256, 3)
    branch_1 = conv2d_bn(branch_1, 384, 3, strides=2, padding='valid')
    branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x)
    branches = [branch_0, branch_1, branch_pool]
    x = Concatenate(name='mixed_6a')(branches)
    # 20次Inception-ResNet-B block: 17 x 17 x 1088 -> 17 x 17 x 1088
    for block_idx in range(1, 21):
        x = inception_resnet_block(x,
                                   scale=0.1,
                                   block_type='block17',
                                   block_idx=block_idx)
    # Reduction-B block: 17 x 17 x 1088 -> 8 x 8 x 2080
    branch_0 = conv2d_bn(x, 256, 1)
    branch_0 = conv2d_bn(branch_0, 384, 3, strides=2, padding='valid')
    branch_1 = conv2d_bn(x, 256, 1)
    branch_1 = conv2d_bn(branch_1, 288, 3, strides=2, padding='valid')
    branch_2 = conv2d_bn(x, 256, 1)
    branch_2 = conv2d_bn(branch_2, 288, 3)
    branch_2 = conv2d_bn(branch_2, 320, 3, strides=2, padding='valid')
    branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x)
    branches = [branch_0, branch_1, branch_2, branch_pool]
    x = Concatenate(name='mixed_7a')(branches)
    # 10次Inception-ResNet-C block: 8 x 8 x 2080 -> 8 x 8 x 2080
    for block_idx in range(1, 10):
        x = inception_resnet_block(x,
                                   scale=0.2,
                                   block_type='block8',
                                   block_idx=block_idx)
    x = inception_resnet_block(x,
                               scale=1.,
                               activation=None,
                               block_type='block8',
                               block_idx=10)
    # 8 x 8 x 2080 -> 8 x 8 x 1536
    x = conv2d_bn(x, 1536, 1, name='conv_7b')
    x = GlobalAveragePooling2D(name='avg_pool')(x)
    x = Dense(classes, activation='softmax', name='predictions')(x)
    inputs = img_input
    # 创建模型
    model = Model(inputs, x, name='inception_resnet_v2')
    return model
def preprocess_input(x):
    x /= 255.
    x -= 0.5
    x *= 2.
    return x
if __name__ == '__main__':
    model = InceptionResNetV2()
    fname = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels.h5'
    weights_path = get_file(fname,BASE_WEIGHT_URL + fname,cache_subdir='models',file_hash='e693bd0210a403b3192acc6073ad2e96')
    model.load_weights(fname)
    img_path = 'elephant.jpg'
    img = image.load_img(img_path, target_size=(299, 299))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    preds = model.predict(x)
    print('Predicted:', decode_predictions(preds))

以上就是python神经网络Inception ResnetV2模型复现详解的详细内容,更多关于Inception ResnetV2模型复现的资料请关注我们其它相关文章!

(0)

相关推荐

  • pytorch之inception_v3的实现案例

    如下所示: from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.optim as optim import numpy as np import torchvision from torchvision import datasets, models, transforms import matplotlib.py

  • 卷积神经网络的网络结构图Inception V3

    目录 1.基于大滤波器尺寸分解卷积 1.1分解到更小的卷积 1.2. 空间分解为不对称卷积 2. 利用辅助分类器 3.降低特征图大小 Inception-V3模型: 总结: <Rethinking the Inception Architecture for Computer Vision> 2015,Google,Inception V3 1.基于大滤波器尺寸分解卷积 GoogLeNet性能优异很大程度在于使用了降维.降维可以看做卷积网络的因式分解.例如1x1卷积层后跟着3x3卷积层.在网络

  • python神经网络InceptionV3模型复现详解

    目录 神经网络学习小记录21——InceptionV3模型的复现详解 学习前言什么是InceptionV3模型InceptionV3网络部分实现代码图片预测 学习前言 Inception系列的结构和其它的前向神经网络的结构不太一样,每一层的内容不是直直向下的,而是分了很多的块. 什么是InceptionV3模型 InceptionV3模型是谷歌Inception系列里面的第三代模型,其模型结构与InceptionV2模型放在了同一篇论文里,其实二者模型结构差距不大,相比于其它神经网络模型,Inc

  • tensorflow卷积神经Inception V3网络结构代码解析

    目录 前言 1 非Inception Module的普通卷积层 2 三个Inception模块组 3 Auxiliary Logits.全局平均池化.Softmax分类 前言 学习了Inception V3卷积神经网络,总结一下对Inception V3网络结构和主要代码的理解. GoogLeNet对网络中的传统卷积层进行了修改,提出了被称为 Inception 的结构,用于增加网络深度和宽度,提高深度神经网络性能.从Inception V1到Inception V4有4个更新版本,每一版的网络

  • python神经网络Inception ResnetV2模型复现详解

    目录 什么是Inception ResnetV2 Inception-ResNetV2的网络结构 1.Stem的结构: 2.Inception-resnet-A的结构: 3.Inception-resnet-B的结构: 4.Inception-resnet-C的结构: 全部代码 什么是Inception ResnetV2 Inception ResnetV2是Inception ResnetV1的一个加强版,两者的结构差距不大,如果大家想了解Inception ResnetV1可以看一下我的另一

  • python神经网络Xception模型复现详解

    目录 什么是Xception模型 Xception网络部分实现代码 图片预测 Xception是继Inception后提出的对Inception v3的另一种改进,学一学总是好的 什么是Xception模型 Xception是谷歌公司继Inception后,提出的InceptionV3的一种改进模型,其改进的主要内容为采用depthwise separable convolution来替换原来Inception v3中的多尺寸卷积核特征响应操作. 在讲Xception模型之前,首先要讲一下什么是

  • python神经网络Densenet模型复现详解

    目录 什么是Densenet Densenet 1.Densenet的整体结构 2.DenseBlock 3.Transition Layer 网络实现代码 什么是Densenet 据说Densenet比Resnet还要厉害,我决定好好学一下. ResNet模型的出现使得深度学习神经网络可以变得更深,进而实现了更高的准确度. ResNet模型的核心是通过建立前面层与后面层之间的短路连接(shortcuts),这有助于训练过程中梯度的反向传播,从而能训练出更深的CNN网络. DenseNet模型,

  • python神经网络ShuffleNetV2模型复现详解

    目录 什么是ShuffleNetV2 ShuffleNetV2 1.所用模块 2.网络整体结构 网络实现代码 什么是ShuffleNetV2 据说ShuffleNetV2比Mobilenet还要厉害,我决定好好学一下 这篇是ECCV2018关于轻量级模型的文章. 目前大部分的轻量级模型在对比模型速度时用的指标是FLOPs,这个指标主要衡量的就是卷积层的乘法操作. 但是实际运用中会发现,同一个FLOPS的网络运算速度却不同,只用FLOPS去进行衡量的话并不能完全代表模型速度. 通过如下图所示对比,

  • python神经网络Batch Normalization底层原理详解

    目录 什么是Batch Normalization Batch Normalization的计算公式 Bn层的好处 为什么要引入γ和β变量 Bn层的代码实现 什么是Batch Normalization Batch Normalization是神经网络中常用的层,解决了很多深度学习中遇到的问题,我们一起来学习一哈. Batch Normalization是由google提出的一种训练优化方法.参考论文:Batch Normalization Accelerating Deep Network T

  • python之生产者消费者模型实现详解

    代码及注释如下 #Auther Bob #--*--conding:utf-8 --*-- #生产者消费者模型,这里的例子是这样的,有一个厨师在做包子,有一个顾客在吃包子,有一个服务员在储存包子,这个服务员我们就可以用queue来实现 import threading import queue import time ''' def consumer(p,que): id = que.get() print("[%s]来吃包子了,我吃到的包子的名字是[%s]" %(p,id)) def

  • python神经网络ResNet50模型的复现详解

    目录 什么是残差网络 什么是ResNet50模型 ResNet50网络部分实现代码 图片预测 什么是残差网络 最近看yolo3里面讲到了残差网络,对这个网络结构很感兴趣,于是了解到这个网络结构最初的使用是在ResNet网络里. Residual net(残差网络): 将靠前若干层的某一层数据输出直接跳过多层引入到后面数据层的输入部分. 意味着后面的特征层的内容会有一部分由其前面的某一层线性贡献. 其结构如下: 深度残差网络的设计是为了克服由于网络深度加深而产生的学习效率变低与准确率无法有效提升的

  • python神经网络MobileNet模型的复现详解

    目录 什么是MobileNet模型 MobileNet网络部分实现代码 图片预测 什么是MobileNet模型 MobileNet是一种轻量级网络,相比于其它结构网络,它不一定是最准的,但是它真的很轻 MobileNet模型是Google针对手机等嵌入式设备提出的一种轻量级的深层神经网络,其使用的核心思想便是depthwise separable convolution. 对于一个卷积点而言: 假设有一个3×3大小的卷积层,其输入通道为16.输出通道为32.具体为,32个3×3大小的卷积核会遍历

  • python神经网络MobileNetV2模型的复现详解

    目录 什么是MobileNetV2模型 MobileNetV2网络部分实现代码 图片预测 什么是MobileNetV2模型 MobileNet它哥MobileNetV2也是很不错的呢 MobileNet模型是Google针对手机等嵌入式设备提出的一种轻量级的深层神经网络,其使用的核心思想便是depthwise separable convolution. MobileNetV2是MobileNet的升级版,它具有两个特征点: 1.Inverted residuals,在ResNet50里我们认识

随机推荐