Python可视化Matplotlib散点图scatter()用法详解

散点图是数据分析中非常常用的图形。用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式。

特点:判断变量之间是否存在数量关联趋势,展示离群点(分布规律)

Matplotlib 中绘制散点图的函数为 scatter() ,使用语法如下:

matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, edgecolors=None, *, data=None, **kwargs)

散点图基本用法

import matplotlib.pyplot as plt
import random

# 0.准备数据
x = range(60)
y_jiangsu = [random.uniform(15, 25) for i in x]
y_beijing = [random.uniform(5,18) for i in x]

# 1.创建画布
plt.figure(figsize=(20, 8), dpi=100)

# 2.绘制图像
plt.scatter(x,y_jiangsu, s=100, c='deeppink', marker='o', label = "江苏")
plt.scatter(x,y_beijing, s=100, c='darkblue', marker='+', label = "北京")

# 2.1 刻度显示
plt.xticks(x[::5], x_ticks_label[::5])
plt.yticks(y_ticks[::5])

# 2.2 添加网格显示
plt.grid(True, linestyle="--", alpha=0.5)

# 2.3 添加描述信息
plt.xlabel("时间", fontsize=15)
plt.ylabel("温度", fontsize=15)
plt.title("中午11点--12点某城市温度变化图", fontsize=20)

# 2.4 图像保存
plt.savefig("./test.png")

# 2.5 添加图例
plt.legend(loc="best")

# 3.图像显示
plt.show()

注:如果没有解决过中文问题的话,绘制的图像会出现中文或者部分符号无法显示的问题。在之前的matplotlib系列文章中已经讲过解决方法了,读者可以自行查找。

创作不易,白嫖不好,各位的支持和认可,就是我创作的最大动力,我们下篇文章见!

Dragon少年 | 文

如果本篇博客有任何错误,请批评指教,不胜感激 !

以上就是Python可视化Matplotlib散点图scatter()用法详解的详细内容,更多关于Python可视化Matplotlib的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python数据可视化编程通过Matplotlib创建散点图代码示例

    Matplotlib简述: Matplotlib是一个用于创建出高质量图表的桌面绘图包(主要是2D方面).该项目是由JohnHunter于2002年启动的,其目的是为Python构建一个MATLAB式的绘图接口.如果结合PythonIDE使用比如PyCharm,matplotlib还具有诸如缩放和平移等交互功能.它不仅支持各种操作系统上许多不同的GUI后端,而且还能将图片导出为各种常见的矢量(vector)和光栅(raster)图:PDF.SVG.JPG.PNG.BMP.GIF等.此外,matp

  • matplotlib在python上绘制3D散点图实例详解

    大家可以先参考官方演示文档: 效果图: ''' ============== 3D scatterplot ============== Demonstration of a basic scatterplot in 3D. ''' from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np def randrange(n, vmin, vmax): ''' Helper f

  • python学习之matplotlib绘制散点图实例

    要绘制单个点,可使用函数scatter(),并向其传递一对x和y坐标,它将在指定位置绘制一个点: """使用scatter()绘制散点图""" import matplotlib.pyplot as plt plt.scatter(2, 4) plt.show() 下面来设置输出的样式:添加标题,给轴加上标签,并确保所有文本都大到能够看清.并使用scatter()绘制一系列点 """使用scatter()绘制散点图&

  • Python可视化Matplotlib介绍和简单图形的绘制

    目录 1. 什么是Matplotlib 2. 实现一个最简单的Matplotlib画图以折线图为例 2.1 matplotlib.pyplot模块 2.2 图形绘制流程 1.创建画布 – plt.figure() 2.绘制图像 – plt.plot(x, y) 3.显示图像 – plt.show() 2.3 折线图绘制与显示 1. 什么是Matplotlib matplotlib是专门用于开发2D图表(包括3D图表),以渐进.交互式方式实现数据可视化.使用python对matplotlib库操作

  • Python可视化Matplotlib折线图plot用法详解

    目录 1.完善原始折线图 - 给图形添加辅助功能 1.1 准备数据并画出初始折线图 1.2 添加自定义x,y刻度 1.3 中文显示问题解决 1.4 添加网格显示 1.5 添加描述信息 1.6 图像保存 2. 在一个坐标系中绘制多个图像 2.1 多次plot 2.2 显示图例 2.3 折线图的应用场景 折线图是数据分析中非常常用的图形.其中,折线图主要是以折线的上升或下降来表示统计数量的增减变化的统计图.用于分析自变量和因变量之间的趋势关系,最适合用于显示随着时间而变化的连续数据,同时还可以看出数

  • Python可视化Matplotlib散点图scatter()用法详解

    散点图是数据分析中非常常用的图形.用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式. 特点:判断变量之间是否存在数量关联趋势,展示离群点(分布规律) Matplotlib 中绘制散点图的函数为 scatter() ,使用语法如下: matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha

  • Python可视化绘制图表的教程详解

    目录 1.Matplotlib 程序包 2.绘图命令的基本架构及其属性设置 3.Seaborn 模块介绍 3.1 未加Seaborn 模块的效果 4.描述性统计图形概览 4.1制作数据 4.2 频数分析 python 有许多可视化工具,但本书只介绍Matplotlib.Matplotlib是一种2D的绘图库,它可以支持硬拷贝和跨系统的交互,它可以在python脚本,IPython的交互环境下.Web应用程序中使用.该项目是由John Hunter 于2002年启动,其目的是为python构建MA

  • Python进度条tqdm的用法详解

    前言 有时候在使用Python处理比较耗时操作的时候,为了便于观察处理进度,这时候就需要通过进度条将处理情况进行可视化展示,以便我们能够及时了解情况.这对于第三方库非常丰富的Python来说,想要实现这一功能并不是什么难事. tqdm就能非常完美的支持和解决这些问题,可以实时输出处理进度而且占用的CPU资源非常少,支持windows.Linux.mac等系统,支持循环处理.多进程.递归处理.还可以结合linux的命令来查看处理情况,等进度展示. 大家先看看tqdm的进度条效果: tqdm安装:

  • Python可视化模块altair的使用详解

    目录 Altair是啥 Altair初体验 图表的保存 Altair之进阶操作 今天小编来和大家聊一下Python当中的altair可视化模块,并且通过调用该模块来绘制一些常见的图表,借助Altair,我们可以将更多的精力和时间放在理解数据本身以及数据的意义上面,从复杂的数据可视化过程中解脱出来. Altair是啥 Altair被称为是统计可视化库,因为它可以通过分类汇总.数据变换.数据交互.图形复合等方式全面地认识数据.理解和分析数据,并且其安装的过程也是十分的简单,直接通过pip命令来执行,

  • python re模块的高级用法详解

    总结 以上所述是小编给大家介绍的python re模块的高级用法详解,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的.在此也非常感谢大家对我们网站的支持!

  • python切片及sys.argv[]用法详解

    一.python切片 a=a[::-1] 倒序 a=a[1:10:2] 下标1~10,以2间隔取 a=a[::2] 2间隔返回a[:] a=[1,2,3,4,5,6,7] print(a[::2]) [1,3,5,7] 二.sys.argv[]用法 Sys.argv[]是用来获取命令行参数的,sys.argv[0]表示代码本身文件路径,所以参数从1开始. 例: import sys,os os.system(sys.argv[1]) 这个例子os.system接收命令行参数,运行参数指令,保存为

  • Python values()与itervalues()的用法详解

    dict 对象有一个 values() 方法,这个方法把dict转换成一个包含所有value的list,这样,我们迭代的就是 dict的每一个 value: d = { 'Adam': 95, 'Lisa': 85, 'Bart': 59 } print d.values() # [85, 95, 59] for v in d.values(): print v # 85 # 95 # 59 如果仔细阅读Python的文档,还可以发现,dict除了values()方法外,还有一个 iterval

  • Python for i in range ()用法详解

    for i in range ()作用: range()是一个函数, for i in range () 就是给i赋值: 比如 for i in range (1,3): 就是把1,2依次赋值给i range () 函数的使用是这样的: range(start, stop[, step]),分别是起始.终止和步长 range(3)即:从0到3,不包含3,即0,1,2 >>> for i in range(3): print(i) 0 1 2 range(1,3) 即:从1到3,不包含3,

  • python yield和Generator函数用法详解

    这篇文章主要介绍了python yield和Generator函数用法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 首先我们从一个小程序导入,各定一个list,找出其中的素数,我们会这样写 import math def is_Prims(number): if number == 2: return True //除2以外的所有偶数都不是素数 elif number % 2 == 0: return False //如果一个数能被除1和

  • python中for in的用法详解

    for in 说明:也是循环结构的一种,经常用于遍历字符串.列表,元组,字典等 格式: for x in y:     循环体 执行流程:x依次表示y中的一个元素,遍历完所有元素循环结束. 例1:遍历字符串 s = 'I love you more than i can say' for i in s: print(i) 例2:遍历列表 l = ['鹅鹅鹅', '曲项向天歌', '锄禾日当午', '春种一粒粟'] for i in l: print(i) # 可以获取下表,enumerate每次

随机推荐