2021年最新用于图像处理的Python库总结

一、OpenCV

OpenCV是最著名和应用最广泛的开源库之一,用于图像处理、目标检测、人脸检测、图像分割、人脸识别等计算机视觉任务。除此之外,它还可以用于机器学习任务。

这是英特尔在2002年开发的。它是用C++编写的,但是开发人员已经提供了Python和java绑定。它易于阅读和使用。

为了建立计算机视觉和机器学习模型,OpenCV有超过2500种算法。这些算法对于执行各种任务非常有用,例如人脸识别、目标检测等。让我们看一些可以使用OpenCV执行的示例:

灰度缩放

灰度缩放是一种将3通道图像(如RGB、HSV等)转换为单通道图像(即灰度)的方法。最终的图像在全白和全黑之间变化。灰度缩放的重要性包括降维(将3通道图像转换为单通道图像)、降低模型复杂度等。

下面的代码片段显示了OpenCV中的灰度缩放

import cv2 as cv
img = cv.imread('example.jpg')
cv.imshow('Original', img)
cv.waitKey()
#Use cvtColor, to convert to grayscale
gray_img = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
cv.imshow('Grayscale', gray_img)
cv.waitKey(0)

旋转图像

OpenCV有助于使用从0到360度的任意角度旋转图像。

检查以下代码以将图像旋转180度。

import cv2 as cv
import matplotlib.pyplot as plt
img = cv.imread('example.jpg')
h, w = image.shape[:2]
rot_matrix = cv.getRotationMatrix2D((w/2,h/2), -180, 0.5)
rot_image = cv.warpAffine(img, rot_matrix, (w, h))
plt.imshow(cv.cvtColor(rot_image, cv.COLOR_BGR2RGB))

OpenCV还提供了除我们到目前为止讨论的功能之外的其他功能。除此之外,它还有助于人脸检测、图像分割、特征提取、目标检测、三维重建等。

有关更多信息,请查看官方文档:https://opencv.org/

二、Scikit-Image

Scikit Image是另一个伟大的开源图像处理库。它几乎适用于任何计算机视觉任务。它是最简单、最直接的库之一。这个库的某些部分是用Cython编写的(它是python编程语言的超集,旨在使python比C语言更快)。

它提供了大量的算法,包括分割、颜色空间操作、几何变换、滤波、形态学、特征检测等。

Scikit Image使用Numpy数组作为图像对象。让我们看看如何在scikit图像中执行活动轮廓操作。活动轮廓描述图像中形状的边界。

检查以下活动轮廓操作代码:

import numpy as np
import matplotlib.pyplot as plt
from skimage.color import rgb2gray
from skimage import data
from skimage.filters import gaussian
from skimage.segmentation import active_contour
image = data.astronaut()
# Data for circular boundary
s = np.linspace(0, 2*np.pi, 400)
x = 220 + 100*np.cos(s)
y = 100 + 100*np.sin(s)
init = np.array([x, y]).T
# formation of the active contour
centre = active_contour(gaussian(image, 3),init, alpha=0.015, beta=10, gamma=0.001)
figure, axis = plt.subplots(1, 2, figsize=(7, 7))
ax[0].imshow(image, cmap=plt.cm.gray)
ax[0].set_title("Original Image")
ax[1].imshow(image, cmap=plt.cm.gray)

有关更多信息,请查看官方文档:https://scikit-image.org/docs/stable/auto_examples/

三、Scipy

SciPy主要用于数学和科学计算,但有时也可以使用子模块SciPy.ndimage用于基本的图像操作和处理任务。

归根结底,图像只是多维数组,SciPy提供了一组用于操作n维Numpy操作的函数。SciPy提供了一些基本的图像处理操作,如人脸检测、卷积、图像分割、读取图像、特征提取等。

除此之外,还可以执行过滤,在图像上绘制轮廓线。

请检查以下代码以使用SciPy模糊图像:

from scipy import ndimage, misc
from matplotlib import pyplot as plt
f = misc.face()
b_face = ndimage.gaussian_filter(f, sigma=3)
figure, axis = plt.subplots(1, 2, figsize=(16, 8))

有关更多信息,请查看官方文档:https://docs.scipy.org/doc/scipy/reference/ndimage.html

四、Python Image Library (Pillow/PIL)

它是一个用于图像处理任务的开放源码python库。它提供了其他库通常不提供的特殊功能,如过滤、打开、操作和保存图像。这个库支持多种文件格式,这使它更高效。PIL还支持图像处理、图像显示和图像存档等功能。让我们看看使用Pillow/PIL的图像增强。

更改图像的清晰度:

有关更多信息,请查看官方文档:https://pillow.readthedocs.io/en/stable/index.html

五、Matplotlib

Matplotlib主要用于二维可视化,如散点图、条形图、直方图等,但我们也可以将其用于图像处理。从图像中提取信息是有效的。它不支持所有的文件格式。

背景颜色更改操作后,请检查以下图像:

有关更多信息,请查看官方文档:https://matplotlib.org/stable/tutorials/introductory/images.html

六、SimpleITK

它也称为图像分割和注册工具包。它是一个用于图像注册和图像分割的开源库。像OpenCV这样的库将图像视为一个数组,但是这个库将图像视为空间中某个区域上的一组点。检查以下示例:

图像分割

有关更多信息,请查看官方文档:https://itk.org/

七、Numpy

它是一个用于数值分析的开放源码python库。它包含一个矩阵和多维数组作为数据结构。但是NumPy也可以用于图像处理任务,例如图像裁剪、操作像素和像素值的蒙版。

检查下图以从图像中提取绿色/红色/蓝色通道:

有关更多信息,请查看官方文档:https://scikit-image.org/docs/dev/user_guide/numpy_images.html

八、Mahotas

它是另一个用于计算机视觉和图像处理的开放源码python库。它是为生物信息学而设计的。它提供了很多算法,这些算法是用C++编写的,速度很快,使用了一个好的Python接口。它以NumPy数组读取和写入图像。

使用Mahotas检查下面的模板匹配图像:

有关更多信息,请查看官方文档:https://mahotas.readthedocs.io/en/latest/#

到此这篇关于2021年用于图像处理的Python库总结的文章就介绍到这了,更多相关Python图像处理常用库内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 详解Python图像处理库Pillow常用使用方法

    PIL(Python Image Library)是python的第三方图像处理库,但是由于其强大的功能与众多的使用人数,几乎已经被认为是python官方图像处理库了. 其官方主页为:PIL. PIL历史悠久,原来是只支持python2.x的版本的,后来出现了移植到python3的库pillow,pillow号称是friendly fork for PIL,其功能和PIL差不多,但是支持python3. PIL(Python Imaging Library)是Python一个强大方便的图像处理库

  • python图像处理基本操作总结(PIL库、Matplotlib及Numpy)

    一.PIL库对图像的基本操作 1.读取图片 PIL网上有很多介绍,这里不再讲解.直接操作,读取一张图片,将其转换为灰度图像,并打印出来. from PIL import Image import matplotlib.pyplot as plt pil_im = Image.open("empire.jpeg") pil_image = pil_im.convert("L") plt.gray() plt.imshow(pil_image) plt.show() 输

  • Python图像处理库PIL中图像格式转换的实现

    在数字图像处理中,针对不同的图像格式有其特定的处理算法.所以,在做图像处理之前,我们需要考虑清楚自己要基于哪种格式的图像进行算法设计及其实现.本文基于这个需求,使用python中的图像处理库PIL来实现不同图像格式的转换. 对于彩色图像,不管其图像格式是PNG,还是BMP,或者JPG,在PIL中,使用Image模块的open()函数打开后,返回的图像对象的模式都是"RGB".而对于灰度图像,不管其图像格式是PNG,还是BMP,或者JPG,打开后,其模式为"L". 通

  • 详解python opencv、scikit-image和PIL图像处理库比较

    进行深度学习时,对图像进行预处理的过程是非常重要的,使用pytorch或者TensorFlow时需要对图像进行预处理以及展示来观看处理效果,因此对python中的图像处理框架进行图像的读取和基本变换的掌握是必要的,接下来python中几个基本的图像处理库进行纵向对比. 项目地址:https://github.com/Oldpan/Pytorch-Learn/tree/master/Image-Processing 比较的图像处理框架: PIL scikit-image opencv-python

  • 2021年最新用于图像处理的Python库总结

    一.OpenCV OpenCV是最著名和应用最广泛的开源库之一,用于图像处理.目标检测.人脸检测.图像分割.人脸识别等计算机视觉任务.除此之外,它还可以用于机器学习任务. 这是英特尔在2002年开发的.它是用C++编写的,但是开发人员已经提供了Python和java绑定.它易于阅读和使用. 为了建立计算机视觉和机器学习模型,OpenCV有超过2500种算法.这些算法对于执行各种任务非常有用,例如人脸识别.目标检测等.让我们看一些可以使用OpenCV执行的示例: 灰度缩放 灰度缩放是一种将3通道图

  • 用于ETL的Python数据转换工具详解

    ETL的考虑   做 数据仓库系统,ETL是关键的一环.说大了,ETL是数据整合解决方案,说小了,就是倒数据的工具.回忆一下工作这么些年来,处理数据迁移.转换的工作倒 还真的不少.但是那些工作基本上是一次性工作或者很小数据量,使用access.DTS或是自己编个小程序搞定.可是在数据仓库系统中,ETL上升到了一 定的理论高度,和原来小打小闹的工具使用不同了.究竟什么不同,从名字上就可以看到,人家已经将倒数据的过程分成3个步骤,E.T.L分别代表抽取.转换 和装载. 其 实ETL过程就是数据流动的

  • 用于业余项目的8个优秀Python库

    在 Python/Django 的世界里有这样一个谚语:为语言而来,为社区而留.对绝大多数人来说的确是这样的,但是,还有一件事情使得我们一直停留在 Python 的世界里,不愿离开,那就是我们可以很容易地利用一顿午餐或晚上几个小时的时间,把一个想法快速地实现出来. 作为一门语言,你知道 Python 是如何获得现在的成功的吗? 不妨去看看它大量的库吧,不管是原生的,还是第三方的,可能会有所收获. 有这么多的库,也就不奇怪为什么有的很多人用,有的却没有引起多少人注意. 而且,专注于一个领域的程序员

  • 3个用于数据科学的顶级Python库

    Python有许多吸引力,如效率,代码可读性和速度,使其成为数据科学爱好者的首选编程语言.Python通常是希望升级其应用程序功能的数据科学家和机器学习专家的首选. 由于其广泛的用途,Python拥有大量的库,使数据科学家可以更轻松地完成复杂的任务,而无需很多编写代码的麻烦.以下是数据科学的前3个Python库. 使用这些库将Python转化为一个科学的数据分析和建模工具. 1.NumPy NumPy(Numerical Python的缩写)是配备有用资源的顶级库之一,可帮助数据科学家将Pyth

  • 这十大Python库你真应该知道

    目录 01.Pandas 02.NumPy 03.Scikit-learn 04.Gradio 05.TensorFlow 06.Keras 07.SciPy 08.Statsmodels 09.Plotly 10.Seaborn 总结 01.Pandas 在数据分析师的日常工作中,70%到80%都涉及到理解和清理数据,也就是数据探索和数据挖掘. Pandas主要用于数据分析,这是最常用的Python库之一.它为你提供了一些最有用的工具来对数据进行探索.清理和分析.使用Pandas,你可以加载.

  • 推荐11个实用Python库

    1) delorean 非常酷的日期/时间库 复制代码 代码如下: from delorean import Delorean EST = "US/Eastern" d = Delorean(timezone=EST) 2) prettytable 可以在浏览器或终端构建很不错的输出 复制代码 代码如下: from prettytable import PrettyTable table = PrettyTable(["animal", "ferocity

  • 解决安装python库时windows error5 报错的问题

    python安装库时,有时候会报错windows error 5,可以尝试关闭所有使用python的编辑器.文件等,然后重新pip安装,如果还是不行,可以将报错最下层文件删除即可(如果不放心可以将该文件先备份),记录之~ windows error错误代码: windows error错误代码: 0操作成功完成. 1功能错误. 2系统找不到指定的文件. 3系统找不到指定的路径. 4系统无法打开文件. 5拒绝访问. 6句柄无效. 7存储控制块被损坏. 8存储空间不足,无法处理此命令. 9存储控制块

  • Python连接Mssql基础教程之Python库pymssql

    前言 pymssql模块是用于sql server数据库(一种数据库通用接口标准)的连接.另外pyodbc不仅限于SQL server,还包括Oracle,MySQL,Access,Excel等. 另外除了pymssql,pyodbc还有其他几种连接SQL server的模块,感兴趣的可以在这里找到:https://wiki.python.org/moin/SQL%20Server 本文将详细介绍关于Python连接Mssql之Python库pymssql的相关内容,下面话不多说了,来一起看看详

  • 使用 prometheus python 库编写自定义指标的方法(完整代码)

    虽然 prometheus 已有大量可直接使用的 exporter 可供使用,以满足收集不同的监控指标的需要.例如,node exporter可以收集机器 cpu,内存等指标,cadvisor可以收集容器指标.然而,如果需要收集一些定制化的指标,还是需要我们编写自定义的指标. 本文讲述如何使用 prometheus python 客户端库和 flask 编写 prometheus 自定义指标. 安装依赖库 我们的程序依赖于flask和prometheus client两个库,其 requirem

随机推荐