浅理解C++ 人脸识别系统的实现

机器学习

  • 机器学习的目的是把数据转换成信息。
  • 机器学习通过从数据里提取规则或模式来把数据转成信息。

人脸识别

  • 人脸识别通过级联分类器对特征的分级筛选来确定是否是人脸。
  • 每个节点的正确识别率很高,但正确拒绝率很低。
  • 任一节点判断没有人脸特征则结束运算,宣布不是人脸。
  • 全部节点通过,则宣布是人脸。

工业上,常用人脸识别技术来识别物体。

基于深度学习的人脸识别系统,一共用到5个开源库:OpenCV(计算机视觉库)、Caffe(深度学习库)、Dlib(机器学习库)、libfacedetection(人脸检测库)、cudnn(gpu加速器)。

用到一个开源的深度学习模型:VGG model。

#include "opencv2/core/core.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"

#include <iostream>
#include <stdio.h>

using namespace std;
using namespace cv;

string face_cascade_name = "haarcascade_frontalface_alt.xml";
CascadeClassifier face_cascade;
string window_name = "人脸识别";

void detectAndDisplay( Mat frame );

int main( int argc, char** argv ){
  Mat image;
  image = imread( argv[1]);

  if( argc != 2 || !image.data ){
    printf("[error] 没有图片\n");
    return -1;
  }

  if( !face_cascade.load( face_cascade_name ) ){
    printf("[error] 无法加载级联分类器文件!\n");
    return -1;
  }

  detectAndDisplay(image);

  waitKey(0);
}

void detectAndDisplay( Mat frame ){
  std::vector<Rect> faces;
  Mat frame_gray;

  cvtColor( frame, frame_gray, CV_BGR2GRAY );
  equalizeHist( frame_gray, frame_gray );

  face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );

  for( int i = 0; i < faces.size(); i++ ){
    Point center( faces[i].x + faces[i].width*0.5, faces[i].y + faces[i].height*0.5 );
    ellipse( frame, center, Size( faces[i].width*0.5, faces[i].height*0.5), 0, 0, 360, Scalar( 255, 0, 255 ), 4, 8, 0 );
  }

  imshow( window_name, frame );
}

参考文章:https://www.cnblogs.com/justany/archive/2012/11/22/2781552.html

到此这篇关于浅理解C++ 人脸识别系统的实现的文章就介绍到这了,更多相关C++ 人脸识别内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python实现人脸识别经典算法(一) 特征脸法

    近来想要做一做人脸识别相关的内容,主要是想集成一个系统,看到opencv已经集成了三种性能较好的算法,但是还是想自己动手试一下,毕竟算法都比较初级. 操作环境:python2.7 第三方库:opencv for python.numpy 第一种比较经典的算法就是特征脸法,本质上其实就是PCA降维,这种算法的基本思路是,把二维的图像先灰度化,转化为一通道的图像,之后再把它首尾相接转化为一个列向量,假设图像大小是20*20的,那么这个向量就是400维,理论上讲组织成一个向量,就可以应用任何机器学习算

  • 微信小程序实现人脸识别

    本文为大家分享了微信小程序人脸识别的具体代码,供大家参考,具体内容如下 首先,我们要有开发者工具,今天所说的是后端和前端联合起来实现的. 在PHP的控制器中写一个upload方法,代码如下: public function upload($id=''){ if(empty($id)){ return false; } $no = M("student")->where("id={$id}")->getField('no'); $dir = ".

  • python使用opencv进行人脸识别

    环境 ubuntu 12.04 LTS python 2.7.3 opencv 2.3.1-7 安装依赖 sudo apt-get install libopencv-* sudo apt-get install python-opencv sudo apt-get install python-numpy 示例代码 #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv d

  • python实现人脸识别代码

    从实时视频流中识别出人脸区域,从原理上看,其依然属于机器学习的领域之一,本质上与谷歌利用深度学习识别出猫没有什么区别.程序通过大量的人脸图片数据进行训练,利用数学算法建立建立可靠的人脸特征模型,如此即可识别出人脸.幸运的是,这些工作OpenCV已经帮我们做了,我们只需调用对应的API函数即可,先给出代码: #-*- coding: utf-8 -*- import cv2 import sys from PIL import Image def CatchUsbVideo(window_name

  • JavaScript人脸识别技术及脸部识别JavaScript类库Tracking.js

    我一直对人工智能识别技术非常感兴趣,因为我无法想象这究竟是一种什么样的算法,什么样的分析过程.无论是声音识别.人脸识别或其它种识别,人们的外貌.说话的方式都是如此不同,一种图片你可以用不同的方式.从不同的角度拍摄,我不能理解这些识别技术是如何做到的.有个叫做"面具"的游戏也使用了这种识别技术,我想对于脸部识别技术也应该研究一下.Facebook使用了这种技术,在手势控制中也能用到它,所以,你网站上也会有应用的地方. 我找到的一个可以用于人脸识别的JavaScript程序包是Face D

  • Python基于Opencv来快速实现人脸识别过程详解(完整版)

    前言 随着人工智能的日益火热,计算机视觉领域发展迅速,尤其在人脸识别或物体检测方向更为广泛,今天就为大家带来最基础的人脸识别基础,从一个个函数开始走进这个奥妙的世界. 首先看一下本实验需要的数据集,为了简便我们只进行两个人的识别,选取了beyond乐队的主唱黄家驹和贝斯手黄家强,这哥俩长得有几分神似,这也是对人脸识别的一个考验: 两个文件夹,一个为训练数据集,一个为测试数据集,训练数据集中有两个文件夹0和1,之前看一些资料有说这里要遵循"slabel"命名规则,但后面处理起来比较麻烦,

  • Android camera实时预览 实时处理,人脸识别示例

    Android camera实时预览 实时处理,面部认证. 预览操作是网友共享的代码,我在继承SurfaceView 的CameraSurfaceView 中加入了帧监听事件,每次预览监听前五个数据帧,在处理做一个面部识别. 先看目录关系 自定义控件CameraSurfaceView.java 自定义接口方法CameraInterface.java CameraActivity预览界面. CameraSurfaceView.Java package com.centaur.camera.prev

  • Python 40行代码实现人脸识别功能

    前言 很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了.这些人里包括曾经的我自己.其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难.今天我们就来看看如何在40行代码以内简单地实现人脸识别. 一点区分 对于大部分人来说,区分人脸检测和人脸识别完全不是问题.但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的.其实,人脸检测解决的问题是确定一张图上有木有人脸,而人

  • opencv 做人脸识别 opencv 人脸匹配分析

    机器学习 机器学习的目的是把数据转换成信息. 机器学习通过从数据里提取规则或模式来把数据转成信息. 人脸识别 人脸识别通过级联分类器对特征的分级筛选来确定是否是人脸. 每个节点的正确识别率很高,但正确拒绝率很低. 任一节点判断没有人脸特征则结束运算,宣布不是人脸. 全部节点通过,则宣布是人脸. 工业上,常用人脸识别技术来识别物体. 对图片进行识别 复制代码 代码如下: #include "opencv2/core/core.hpp" #include "opencv2/obj

  • python3+dlib实现人脸识别和情绪分析

    一.介绍 我想做的是基于人脸识别的表情(情绪)分析.看到网上也是有很多的开源库提供使用,为开发提供了很大的方便.我选择目前用的比较多的dlib库进行人脸识别与特征标定.使用python也缩短了开发周期. 官网对于dlib的介绍是:Dlib包含广泛的机器学习算法.所有的设计都是高度模块化的,快速执行,并且通过一个干净而现代的C ++ API,使用起来非常简单.它用于各种应用,包括机器人技术,嵌入式设备,手机和大型高性能计算环境. 虽然应用都比较高大上,但是自己在PC上做个情绪分析的小软件还是挺有意

随机推荐