python中的多线程锁lock=threading.Lock()使用方式

目录
  • 多线程锁lock=threading.Lock()使用
    • 疑问
    • 解决方法
    • 例子
  • python多线程中锁的概念
    • 锁可以独立提取出来
    • 概念
    • 线程不安全
    • 线程锁

多线程锁lock=threading.Lock()使用

疑问

多线程任务是同时执行的,如果我们需要先执行线程a,再执行线程b,需要怎么办呢?

解决方法

使用python的多线程锁lock。

例子

未使用多线程锁lock:

def a():
    for i in range(3):
        print('a%d' % (i + 1))
        time.sleep(1)

def b():
    for i in range(3):
        print('b%d' % (i + 1))
        time.sleep(1)

T = threading.Thread(target=a)
T.start()

T = threading.Thread(target=b)
T.start()

运行结果:可看到,线程a和b是同时执行的

a1
b1
a2b2

a3
b3

Process finished with exit code 0

使用多线程锁lock后:

lock = threading.Lock()

def a():
    lock.acquire()
    for i in range(3):
        print('a%d' % (i + 1))
        time.sleep(1)
    lock.release()

def b():
    lock.acquire()
    for i in range(3):
        print('b%d' % (i + 1))
        time.sleep(1)
    lock.release()

T = threading.Thread(target=a)
T.start()

T = threading.Thread(target=b)
T.start()

运行结果:可看到,线程a先执行完,再执行线程b

a1
a2
a3
b1
b2
b3

Process finished with exit code 0

python多线程中锁的概念

锁可以独立提取出来

mutex = threading.Lock()
#锁的使用
#创建锁
mutex = threading.Lock()
#锁定
mutex.acquire([timeout])
#释放
mutex.release()

概念

好几个人问我给资源加锁是怎么回事,其实并不是给资源加锁, 而是用锁去锁定资源,你可以定义多个锁, 像下面的代码, 当你需要独占某一资源时,任何一个锁都可以锁这个资源

就好比你用不同的锁都可以把相同的一个门锁住是一个道理

import  threading
import  time
counter = 0
counter_lock = threading.Lock() #只是定义一个锁,并不是给资源加锁,你可以定义多个锁,像下两行代码,当你需要占用这个资源时,任何一个锁都可以锁这个资源
counter_lock2 = threading.Lock()
counter_lock3 = threading.Lock() 

#可以使用上边三个锁的任何一个来锁定资源 

class  MyThread(threading.Thread):#使用类定义thread,继承threading.Thread
     def  __init__(self,name):
        threading.Thread.__init__(self)
        self.name = "Thread-" + str(name)
     def run(self):   #run函数必须实现
         global counter,counter_lock #多线程是共享资源的,使用全局变量
         time.sleep(1);
         if counter_lock.acquire(): #当需要独占counter资源时,必须先锁定,这个锁可以是任意的一个锁,可以使用上边定义的3个锁中的任意一个
            counter += 1
            print "I am %s, set counter:%s"  % (self.name,counter)
            counter_lock.release() #使用完counter资源必须要将这个锁打开,让其他线程使用 

if  __name__ ==  "__main__":
    for i in xrange(1,101):
        my_thread = MyThread(i)
        my_thread.start()

线程不安全

最普通的一个多线程小例子。我一笔带过地讲一讲,我创建了一个继承Thread类的子类MyThread,作为我们的线程启动类。按照规定,重写Thread的run方法,我们的线程启动起来后会自动调用该方法。于是我首先创建了10个线程,并将其加入列表中。再使用一个for循环,开启每个线程。在使用一个for循环,调用join方法等待所有线程结束才退出主线程。

这段代码看似简单,但实际上隐藏着一个很大的问题,只是在这里没有体现出来。你真的以为我创建了10个线程,并按顺序调用了这10个线程,每个线程为n增加了1.实际上,有可能是A线程执行了n++,再C线程执行了n++,再B线程执行n++。

这里涉及到一个“锁”的问题,如果有多个线程同时操作一个对象,如果没有很好地保护该对象,会造成程序结果的不可预期(比如我们在每个线程的run方法中加入一个time.sleep(1),并同时输出线程名称,则我们会发现,输出会乱七八糟。因为可能我们的一个print语句只打印出一半的字符,这个线程就被暂停,执行另一个去了,所以我们看到的结果很乱),这种现象叫做“线程不安全”

线程锁

于是,Threading模块为我们提供了一个类,Threading.Lock,锁。我们创建一个该类对象,在线程函数执行前,“抢占”该锁,执行完成后,“释放”该锁,则我们确保了每次只有一个线程占有该锁。这时候对一个公共的对象进行操作,则不会发生线程不安全的现象了。

于是,我们把代码更改如下:

# coding : uft-8
__author__ = 'Phtih0n'
import threading, time
class MyThread(threading.Thread):
    def __init__(self):
        threading.Thread.__init__(self)
    def run(self):
        global n, lock
        time.sleep(1)
        if lock.acquire():
            print n , self.name
            n += 1
            lock.release()
if "__main__" == __name__:
    n = 1
    ThreadList = []
    lock = threading.Lock()
    for i in range(1, 200):
        t = MyThread()
        ThreadList.append(t)
    for t in ThreadList:
        t.start()
    for t in ThreadList:
        t.join()

1 Thread-2
2 Thread-3
3 Thread-4
4 Thread-6
5 Thread-7
6 Thread-1
7 Thread-8
8 Thread-9
9 Thread-5
 
Process finished with exit code 0

我们看到,我们先建立了一个threading.Lock类对象lock,在run方法里,我们使用lock.acquire()获得了这个锁。此时,其他的线程就无法再获得该锁了,他们就会阻塞在“if lock.acquire()”这里,直到锁被另一个线程释放:lock.release()。

所以,if语句中的内容就是一块完整的代码,不会再存在执行了一半就暂停去执行别的线程的情况。所以最后结果是整齐的。

就如同在java中,我们使用synchronized关键字修饰一个方法,目的一样,让某段代码被一个线程执行时,不会打断跳到另一个线程中。

这是多线程占用一个公共对象时候的情况。如果多个线程要调用多个现象,而A线程调用A锁占用了A对象,B线程调用了B锁占用了B对象,A线程不能调用B对象,B线程不能调用A对象,于是一直等待。这就造成了线程“死锁”。

Threading模块中,也有一个类,RLock,称之为可重入锁。该锁对象内部维护着一个Lock和一个counter对象。counter对象记录了acquire的次数,使得资源可以被多次require。最后,当所有RLock被release后,其他线程才能获取资源。在同一个线程中,RLock.acquire可以被多次调用,利用该特性,可以解决部分死锁问题。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 对python多线程中Lock()与RLock()锁详解

    资源总是有限的,程序运行如果对同一个对象进行操作,则有可能造成资源的争用,甚至导致死锁 也可能导致读写混乱 锁提供如下方法: 1.Lock.acquire([blocking]) 2.Lock.release() 3.threading.Lock() 加载线程的锁对象,是一个基本的锁对象,一次只能一个锁定,其余锁请求,需等待锁释放后才能获取 4.threading.RLock() 多重锁,在同一线程中可用被多次acquire.如果使用RLock,那么acquire和release必须成对出现,

  • python多线程互斥锁与死锁

    目录 一.多线程间的资源竞争 二.互斥锁 1.互斥锁示例 2.可重入锁与不可重入锁 三.死锁 一.多线程间的资源竞争 以下列task1(),task2()两个函数为例,分别将对全局变量num加一重复一千万次循环(数据大一些,太小的话执行太快,达不到验证的效果). import threading import time num = 0 def task1(nums):     global num     for i in range(nums):         num += 1     pr

  • 举例讲解Python中的死锁、可重入锁和互斥锁

    一.死锁 简单来说,死锁是一个资源被多次调用,而多次调用方都未能释放该资源就会造成死锁,这里结合例子说明下两种常见的死锁情况. 1.迭代死锁 该情况是一个线程"迭代"请求同一个资源,直接就会造成死锁: import threading import time class MyThread(threading.Thread): def run(self): global num time.sleep(1) if mutex.acquire(1): num = num+1 msg = se

  • python线程中同步锁详解

    在使用多线程的应用下,如何保证线程安全,以及线程之间的同步,或者访问共享变量等问题是十分棘手的问题,也是使用多线程下面临的问题,如果处理不好,会带来较严重的后果,使用python多线程中提供Lock Rlock Semaphore Event Condition 用来保证线程之间的同步,后者保证访问共享变量的互斥问题 Lock & RLock:互斥锁 用来保证多线程访问共享变量的问题 Semaphore对象:Lock互斥锁的加强版,可以被多个线程同时拥有,而Lock只能被某一个线程同时拥有. E

  • python中的多线程锁lock=threading.Lock()使用方式

    目录 多线程锁lock=threading.Lock()使用 疑问 解决方法 例子 python多线程中锁的概念 锁可以独立提取出来 概念 线程不安全 线程锁 多线程锁lock=threading.Lock()使用 疑问 多线程任务是同时执行的,如果我们需要先执行线程a,再执行线程b,需要怎么办呢? 解决方法 使用python的多线程锁lock. 例子 未使用多线程锁lock: def a():     for i in range(3):         print('a%d' % (i +

  • Python并行编程多线程锁机制Lock与RLock实现线程同步

    目录 什么是锁机制? Lock() 管理线程 RLock() 与Lock()的区别 什么是锁机制? 要回答这个问题,我们需要知道为什么需要使用锁机制.前面我们谈到一个进程内的多个线程的某些资源是共享的,这也是线程的一大优势,但是也随之带来一个问题,即当两个及两个以上的线程同时访问共享资源时,如果此时没有预设对应的同步机制,就可能带来同一时刻多个线程同时访问同一个共享资源,即出现竞态,多数情况下我们是不希望出现这样的情况的,那么怎么避免呢? Lock() 管理线程 先看一段代码: import t

  • python中的多线程实例教程

    本文以实例形式较为详细的讲述了Python中多线程的用法,在Python程序设计中有着比较广泛的应用.分享给大家供大家参考之用.具体分析如下: python中关于多线程的操作可以使用thread和threading模块来实现,其中thread模块在Py3中已经改名为_thread,不再推荐使用.而threading模块是在thread之上进行了封装,也是推荐使用的多线程模块,本文主要基于threading模块进行介绍.在某些版本中thread模块可能不存在,要使用dump_threading来代

  • Python中的多线程

    什么是多线程: 进程:正在运行的程序,QQ 360 ...... 线程:就是进程中一条执行程序的执行路径,一个程序至少有一条执行路径.(360中的杀毒 电脑体检 电脑清理 同时运行的话就需要开启多条路径) 每个线程都有自己需要运行的内容,而这些内容可以称为线程要执行的任务. 开启多线程是为了同时运行多部分代码. 好处:解决了多部分需要同时运行的问题 弊端:如果线程过多,会导致效率很低(因为程序的执行都是CPU做着随机 快速切换来完成的) 线程与进程的区别 线程共享内存,进程独立内存 线程启动速度

  • Python中的多线程实例(简单易懂)

    目录 1.python中显示当前线程信息的属性和方法 2.添加一个线程 3.线程中的join函数 4.使用Queue存储线程的结果 5.线程锁lock 前言: 多线程简单理解就是:一个CPU,也就是单核,将时间切成一片一片的,CPU轮转着去处理一件一件的事情,到了规定的时间片就处理下一件事情. 1.python中显示当前线程信息的属性和方法 # coding:utf-8 # 导入threading包 import threading if __name__ == "__main__":

  • 浅谈Python中的全局锁(GIL)问题

    CPU-bound(计算密集型) 和I/O bound(I/O密集型) 计算密集型任务(CPU-bound) 的特点是要进行大量的计算,占据着主要的任务,消耗CPU资源,一直处于满负荷状态.比如复杂的加减乘除.计算圆周率.对视频进行高清解码等等,全靠CPU的运算能力.这种计算密集型任务虽然也可以用多任务完成,但是任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以,要最高效地利用CPU,计算密集型任务同时进行的数量应当等于CPU的核心数. 计算密集型任务由于主要消耗CPU资源,因

  • 详解python中字典的循环遍历的两种方式

    开发中经常会用到对于字典.列表等数据的循环遍历,但是python中对于字典的遍历对于很多初学者来讲非常陌生,今天就来讲一下python中字典的循环遍历的两种方式. 注意: python2和python3中,下面两种方法都是通用的. 1. 只对键的遍历 一个简单的for语句就能循环字典的所有键,就像处理序列一样: d = {'name1' : 'pythontab', 'name2' : '.', 'name3' : 'com'} for key in d: print (key, ' value

  • Python中的CSV文件使用"with"语句的方式详解

    是否可以直接使用with语句与CSV文件?能够做这样的事情似乎很自然: import csv with csv.reader(open("myfile.csv")) as reader: # do things with reader 但是csv.reader不提供__enter__和__exit__方法,所以这不行.但是我可以分两步做: import csv with open("myfile.csv") as f: reader = csv.reader(f)

  • 在python中创建指定大小的多维数组方式

    python中创建指定大小的二维数组,有点像C++中进行动态申请内存创建数组,不过相比较而言,python中更为简单一些. 创建n行m列的二维数组: n = 2 m = 3 matrix = [None]*2 for i in range(len(matrix)): matrix[i] = [0]*3 print(matrix) 当然也可以使用list comprehension的方式创建: n = 2 m = 3 matrix = [[0]*m for i in range(n)] print

  • python中设置超时跳过,超时退出的方式

    在工作中遇到过 个问题 执行一条代码时间过长 而且还不报错,卡死在那.还要继续执行下面代码,如何操作. 下面是个简单的实例 pip安装 第三方eventlet这个包 – pip install eventlet import time import eventlet#导入eventlet这个模块 eventlet.monkey_patch()#必须加这条代码 with eventlet.Timeout(2,False):#设置超时时间为2秒 time.sleep(4) print('没有跳过这条

随机推荐