Python实现曲线拟合的最小二乘法

本文实例为大家分享了Python曲线拟合的最小二乘法,供大家参考,具体内容如下

模块导入

import numpy as np
import gaosi as gs

代码

"""
本函数通过创建增广矩阵,并调用高斯列主元消去法模块进行求解。

"""
import numpy as np
import gaosi as gs

shape = int(input('请输入拟合函数的次数:'))

x = np.array([0.6,1.3,1.64,1.8,2.1,2.3,2.44])
y = np.array([7.05,12.2,14.4,15.2,17.4,19.6,20.2])
data = []
for i in range(shape*2+1):
 if i != 0:
 data.append(np.sum(x**i))
 else:
 data.append(len(x))
b = []
for i in range(shape+1):
 if i != 0:
 b.append(np.sum(y*x**i))
 else:
 b.append(np.sum(y))
b = np.array(b).reshape(shape+1,1)
n = np.zeros([shape+1,shape+1])
for i in range(shape+1):
 for j in range(shape+1):
 n[i][j] = data[i+j]
result = gs.Handle(n,b)
if not result:
 print('增广矩阵求解失败!')
 exit()
fun='f(x) = '
for i in range(len(result)):
 if type(result[i]) == type(''):
 print('存在自由变量!')
 fun = fun + str(result[i])
 elif i == 0:
 fun = fun + '{:.3f}'.format(result[i])
 else:
 fun = fun + '+{0:.3f}*x^{1}'.format(result[i],i)
print('求得{0}次拟合函数为:'.format(shape))
print(fun)

高斯模块

# 导入 numpy 模块
import numpy as np

# 行交换
def swap_row(matrix, i, j):
 m, n = matrix.shape
 if i >= m or j >= m:
 print('错误! : 行交换超出范围 ...')
 else:
 matrix[i],matrix[j] = matrix[j].copy(),matrix[i].copy()
 return matrix

# 变成阶梯矩阵
def matrix_change(matrix):
 m, n = matrix.shape
 main_factor = []
 main_col = main_row = 0
 while main_row < m and main_col < n:
 # 选择进行下一次主元查找的列
 main_row = len(main_factor)
 # 寻找列中非零的元素
 not_zeros = np.where(abs(matrix[main_row:,main_col]) > 0)[0]
 # 如果该列向下全部数据为零,则直接跳过列
 if len(not_zeros) == 0:
 main_col += 1
 continue
 else:
 # 将主元列号保存在列表中
 main_factor.append(main_col)
 # 将第一个非零行交换至最前
 if not_zeros[0] != [0]:
 matrix = swap_row(matrix,main_row,main_row+not_zeros[0])
 # 将该列主元下方所有元素变为零
 if main_row < m-1:
 for k in range(main_row+1,m):
 a = float(matrix[k, main_col] / matrix[main_row, main_col])
 matrix[k] = matrix[k] - matrix[main_row] * matrix[k, main_col] / matrix[main_row, main_col]
 main_col += 1
 return matrix,main_factor

# 回代求解
def back_solve(matrix, main_factor):
 # 判断是否有解
 if len(main_factor) == 0:
 print('主元错误,无主元! ...')
 return None
 m, n = matrix.shape
 if main_factor[-1] == n - 1:
 print('无解! ...')
 return None
 # 把所有的主元元素上方的元素变成0
 for i in range(len(main_factor) - 1, -1, -1):
 factor = matrix[i, main_factor[i]]
 matrix[i] = matrix[i] / float(factor)
 for j in range(i):
 times = matrix[j, main_factor[i]]
 matrix[j] = matrix[j] - float(times) * matrix[i]
 # 先看看结果对不对
 return matrix

# 结果打印
def print_result(matrix, main_factor):
 if matrix is None:
 print('阶梯矩阵为空! ...')
 return None
 m, n = matrix.shape
 result = [''] * (n - 1)
 main_factor = list(main_factor)
 for i in range(n - 1):
 # 如果不是主元列,则为自由变量
 if i not in main_factor:
 result[i] = '(free var)'
 # 否则是主元变量,从对应的行,将主元变量表示成非主元变量的线性组合
 else:
 # row_of_main表示该主元所在的行
 row_of_main = main_factor.index(i)
 result[i] = matrix[row_of_main, -1]
 return result

# 得到简化的阶梯矩阵和主元列
def Handle(matrix_a, matrix_b):
 # 拼接成增广矩阵
 matrix_01 = np.hstack([matrix_a, matrix_b])
 matrix_01, main_factor = matrix_change(matrix_01)
 matrix_01 = back_solve(matrix_01, main_factor)
 result = print_result(matrix_01, main_factor)
 return result

if __name__ == '__main__':
 a = np.array([[2, 1, 1], [3, 1, 2], [1, 2, 2]],dtype=float)
 b = np.array([[4],[6],[5]],dtype=float)
 a = Handle(a, b)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python中实现最小二乘法思路及实现代码

    之所以说"使用"而不是"实现",是因为python的相关类库已经帮我们实现了具体算法,而我们只要学会使用就可以了.随着对技术的逐渐掌握及积累,当类库中的算法已经无法满足自身需求的时候,我们也可以尝试通过自己的方式实现各种算法. 言归正传,什么是"最小二乘法"呢? 定义:最小二乘法(又称最小平方法)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配. 作用:利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误

  • Python最小二乘法矩阵

    最小二乘法矩阵 #! /usr/bin/env python # -*- coding: utf-8 -*- import numpy as np def calc_left_k_mat(k): """ 获得左侧k矩阵 :param k: :return: """ k_mat = [] for i in range(k + 1): now_line = [] for j in range(k + 1): now_line.append(j + i

  • Python基于最小二乘法实现曲线拟合示例

    本文实例讲述了Python基于最小二乘法实现曲线拟合.分享给大家供大家参考,具体如下: 这里不手动实现最小二乘,调用scipy库中实现好的相关优化函数. 考虑如下的含有4个参数的函数式: 构造数据 import numpy as np from scipy import optimize import matplotlib.pyplot as plt def logistic4(x, A, B, C, D): return (A-D)/(1+(x/C)**B)+D def residuals(p

  • Python 普通最小二乘法(OLS)进行多项式拟合的方法

    多元函数拟合.如 电视机和收音机价格多销售额的影响,此时自变量有两个. python 解法: import numpy as np import pandas as pd #import statsmodels.api as sm #方法一 import statsmodels.formula.api as smf #方法二 import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D df = pd.read_c

  • python实现最小二乘法线性拟合

    本文python代码实现的是最小二乘法线性拟合,并且包含自己造的轮子与别人造的轮子的结果比较. 问题:对直线附近的带有噪声的数据进行线性拟合,最终求出w,b的估计值. 最小二乘法基本思想是使得样本方差最小. 代码中self_func()函数为自定义拟合函数,skl_func()为调用scikit-learn中线性模块的函数. import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import Li

  • 最小二乘法及其python实现详解

    最小二乘法Least Square Method,做为分类回归算法的基础,有着悠久的历史(由马里·勒让德于1806年提出).它通过最小化误差的平方和寻找数据的最佳函数匹配.利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小.最小二乘法还可用于曲线拟合.其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达. 那什么是最小二乘法呢?别着急,我们先从几个简单的概念说起. 假设我们现在有一系列的数据点 ,那么由我们给出的拟合函数h(x)得到的估计量就是

  • python中最小二乘法详细讲解

    python中在实现一元线性回归时会使用最小二乘法,那你知道最小二乘法是什么吗.其实最小二乘法为分类回归算法的基础,从求解线性透视图中的消失点,m元n次函数的拟合,包括后来学到的神经网络,其思想归根结底全都是最小二乘法.本文向大家介绍python中的最小二乘法. 一.最小二乘法是什么 最小二乘法Least Square Method,做为分类回归算法的基础,有着悠久的历史(由马里·勒让德于1806年提出). 二.最小二乘法实现原理 通过最小化误差的平方和寻找数据的最佳函数匹配. 三.最小二乘法功

  • python中matplotlib实现最小二乘法拟合的过程详解

    前言 最小二乘法Least Square Method,做为分类回归算法的基础,有着悠久的历史(由马里·勒让德于1806年提出).它通过最小化误差的平方和寻找数据的最佳函数匹配.利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小.最小二乘法还可用于曲线拟合.其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达. 下面这篇文章主要跟大家介绍了关于python中matplotlib实现最小二乘法拟合的相关内容,下面话不多说,来一起看看详细的介绍:

  • Python实现曲线拟合的最小二乘法

    本文实例为大家分享了Python曲线拟合的最小二乘法,供大家参考,具体内容如下 模块导入 import numpy as np import gaosi as gs 代码 """ 本函数通过创建增广矩阵,并调用高斯列主元消去法模块进行求解. """ import numpy as np import gaosi as gs shape = int(input('请输入拟合函数的次数:')) x = np.array([0.6,1.3,1.64,1

  • Python 做曲线拟合和求积分的方法

    这是一个由加油站油罐传感器测量的油罐高度数据和出油体积,根据体积和高度的倒数,用截面积来描述油罐形状,求出拟合曲线,再用标准数据,求积分来验证拟合曲线效果和误差的一个小项目. 主要的就是首先要安装Anaconda  python库,然后来运用这些数学工具. ###最小二乘法试验### import numpy as np import pymysql from scipy.optimize import leastsq from scipy import integrate ###绘图,看拟合效

  • Python实现曲线拟合操作示例【基于numpy,scipy,matplotlib库】

    本文实例讲述了Python实现曲线拟合操作.分享给大家供大家参考,具体如下: 这两天学习了用python来拟合曲线. 一.环境配置 本人比较比较懒,所以下载的全部是exe文件来安装,安装按照顺利来安装.自动会找到python的安装路径,一直点下一步就行.还有其他的两种安装方式:一种是解压,一种是pip.我没有尝试,就不乱说八道了. 没有ArcGIS 环境的,可以不看下面这段话了. 在配置环境时遇见一个小波折,就是原先电脑装过ArcGIS10.2 ,所以其会默认安装python2.7,而且pyth

  • Python数据拟合实现最小二乘法示例解析

    目录 线性拟合 高阶多项式 多自变量 指数函数 所谓最小二乘法,即通过对数据进行拟合,使得拟合值与样本值的方差最小. 线性拟合 这个表达式还是非常简单的. 对于有些情况,我们往往选取自然序列作为自变量,这个时候在求自变量的取值时可以用到一些初等数学的推论,对于 x ∈ [ m , n ] 的自然序列来说,有 #文件名core.py import numpy as np def leastSquare(x,y): if len(x)==2: #此时x为自然序列 sx = 0.5*(x[1]-x[0

  • Python使用scipy进行曲线拟合的方法实例

    目录 导读 曲线拟合 总结 导读 曲线拟合的应用在生活中随处可见,不知道大家是否还记得物理实验中的自由落体运动中下降高度与时间关系之间的探究,在初速度为0的情况下,我们想要探究下降高度与时间的关系. 我们当时采用的方法是通过设置不同的下降时间来记录下降的高度,测量记录多组数据之后,再利用二维坐标系将记录的点绘制到坐标系当中去,然后保证绘制的曲线到这些点的距离之和最小,最终得到的曲线就是h与t的关系. 绘制出h和t的关系之后,我就可以知道任意取值t在初速度为0的情况下,下降高度h对应的值.除此之外

  • Python实现的多项式拟合功能示例【基于matplotlib】

    本文实例讲述了Python实现的多项式拟合功能.分享给大家供大家参考,具体如下: # -*- coding: utf-8 -*- #! python2 import numpy as np import matplotlib.pyplot as plt from pylab import mpl mpl.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体 plt.rcParams['axes.unicode_minus']=False #解决负数坐

随机推荐