python jieba库的基本使用

一、jieba库概述

jieba是优秀的中文分词第三方库

  • 中文文本需要通过分词获得单个的词语
  • jieba是优秀的中文分词第三方库,需要额外安装
  • jieba库提供三种分词模式,最简单只需要掌握一个函数

二、jieba库安装

pip install jieba

三、jieba分词的原理

jieba分词依靠中文词库

  • 利用一个中文词库,确定汉字之间的关联概率
  • 汉字间概率大的组成词组,形成分词结果

四、jieba分词的3种模式

  • 精确模式:把文本精确地切分开,不存在冗余单词(最常用)
  • 全模式:把文本中所有可能的词语都扫描出来,有冗余
  • 搜索引擎模式:在精确模式的基础上,对长词再次切分

五、jieba库常用函数

函数 描述
jieba.lcut(s) 精确模式,返回一个列表类型的分词结果
jieba.lcut(s,cut_all=True) 全模式,返回一个列表类型的分词结果,存在冗余
jieba.lcut_for_search(s) 搜索引擎模式,返回一个列表类型的分词结果,存在冗余
jieba.lcut(s) 精确模式,返回一个列表类型的分词结果
jieba.add_word(s) 向分词词典增加新词w

例子:

>>> jieba.lcut("中国是一个伟大的国家")
['中国', '是', '一个', '伟大', '的', '国家']

>>> jieba.lcut("中国是一个伟大的国家", cut_all=True)
['中国', '国是', '一个', '伟大', '的', '国家']

>>> jieba.lcut_for_search("中华人民共和国是伟大的")
['中华', '华人', '人民', '共和', '共和国', '中华人民共和国', '是', '伟大', '的']

六、文本词频示例

问题分析

  • 英文文本: Hamlet 分析词频

https://python123.io/resources/pye/hamlet.txt

  • 中文文本: 《三国演义》 分析人物

https://python123.io/resources/pye/threekingdoms.txt

代码如下:

def getText():
 # 打开 hamlet.txt 这个文件
 txt = open("hamlet.txt", "r").read()
 # 避免大小写对词频统计的干扰,将所有单词转换为小写
 txt = txt.lower()
 # 将文中出现的所有特殊字符替换为空格
 for ch in '|"#$%^&*()_+-=\\`~{}[];:<>?/':
 txt = txt.replace(ch, " ")
 # 返回一个所以后单词都是小写的,单词间以空格间隔的文本
 return txt

hamletTxt = getText()
# split() 默认使用空格作为分隔符
words = hamletTxt.split()
counts = {}
for word in words:
 counts[word] = counts.get(word,0) + 1
items = list(counts.items())
items.sort(key=lambda x:x[1], reverse=True)
for i in range(10):
 word, count = items[i]
 print("{0:<10}{1:>5}".format(word,count))

上面代码中的

items.sort(key=lambda x:x[1], reverse=True)

是根据单词出现的次数进行排序,其中使用了 lambda 函数。更多解释请看:
https://www.runoob.com/python/att-list-sort.html

下面使用 jieba 库来统计《三国演义》中任务出场的次数:

import jieba
txt = open("threekingdoms.txt","r",encoding="utf-8").read()
words = jieba.lcut(txt)
counts = {}
for word in words:
 if len(word) == 1:
 continue
 else:
 counts[word] = counts.get(word, 0) + 1

items = list(counts.items())
items.sort(key=lambda x:x[1], reverse=True)
for i in range(15):
 word, count = items[i]
 print("{0:<10}{1:>5}".format(word,count))

运行结果:

曹操  953
孔明  836
将军  772
却说  656
玄德  585
关公  510
丞相  491
二人  469
不可  440
荆州  425
玄德曰  390
孔明曰  390
不能  384
如此  378
张飞  358

我们可以看到得出的结果与我们想象的有些差异,比如

  • “却说”、“二人”等与人名无关
  • “诸葛亮”、“孔明”都是同一个人
  • “孔明”和“孔明曰”分词不符合我们的需求

所以我们需要对上面代码进行优化,在词频统计的基础上,面向问题改造我们的程序。

下面是《三国演义》人物数量统计代码的升级版,升级版中对于某些确定不是人名的词,即使做了词频统计,也要将它删除掉。使用寄一个集合excludes来接收一些确定不是人名但是又排序比较靠前的单词列进去。

import jieba
txt = open("threekingdoms.txt","r",encoding="utf-8").read()
excludes = {"将军","却说","荆州","二人","不可","不能","如此"}
words = jieba.lcut(txt)
counts = {}
for word in words:
 if len(word) == 1:
 continue
 elif word == "诸葛亮" or word == "孔明曰":
 rword == "孔明"
 elif word == "关公" or word == "云长":
 rword == "关羽"
 elif word == "玄德" or word == "玄德曰":
 rword == "刘备"
 elif word == "孟德" or word == "丞相":
 rword == "曹操"
 else:
 rword = word
 counts[rword] = counts.get(rword, 0) + 1

items = list(counts.items())
items.sort(key=lambda x:x[1], reverse=True)
for i in range(15):
 word, count = items[i]
 print("{0:<10}{1:>5}".format(word,count))

运行结果:

曹操  963
孔明  847
张飞  366
商议  359
如何  352
主公  340
军士  320
吕布  303
左右  298
军马  297
赵云  283
刘备  282
引兵  279
次日  278
大喜  274

可以看出还是有像“商议”、“如何”等不是人物的词出现在统计结果,我们将这些词加入到 excludes 中,多次运行程序后最后得到《三国演义》任务出场顺序前20:

七、文本词频统计问题举一反三

应用问题扩展

  • 《红楼梦》、《西游记》、《水浒传》...等名著都可以统计它的任务出场次数
  • 政府工作报告、科研论文、新闻报道...中出现的大量的词频进行分析,进而找到每篇文章的重点内容
  • 进一步,对文本的词语或词汇绘制成词云,使其展示的效果更加直观

以上内容资料均来源于中国大学MOOC网-北京理工大学Python语言程序设计课程
课程地址:https://www.icourse163.org/course/BIT-268001

以上就是python jieba库的基本使用的详细内容,更多关于python jieba库的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python中文分词库jieba,pkusegwg性能准确度比较

    中文分词(Chinese Word Segmentation),将中文语句切割成单独的词组.英文使用空格来分开每个单词的,而中文单独一个汉字跟词有时候完全不是同个含义,因此,中文分词相比英文分词难度高很多. 分词主要用于NLP 自然语言处理(Natural Language Processing),使用场景有: 搜索优化,关键词提取(百度指数) 语义分析,智能问答系统(客服系统) 非结构化文本媒体内容,如社交信息(微博热榜) 文本聚类,根据内容生成分类(行业分类) Python的中文分词 Pyt

  • Python基于jieba, wordcloud库生成中文词云

    代码如下 import wordcloud import jieba font = r'C:\Windows\Fonts\simfang.ttf' w = wordcloud.WordCloud(height = 700, width = 1000, font_path=font, \ stopwords=['et','al', 'Crampin', 'and','the', 'Liu'], max_words=30) with open('NSFC.txt', 'r') as f: txt =

  • python中文分词库jieba使用方法详解

    安装python中文分词库jieba 法1:Anaconda Prompt下输入conda install jieba 法2:Terminal下输入pip3 install jieba 1.分词 1.1.CUT函数简介 cut(sentence, cut_all=False, HMM=True) 返回生成器,遍历生成器即可获得分词的结果 lcut(sentence) 返回分词列表 import jieba sentence = '我爱自然语言处理' # 创建[Tokenizer.cut 生成器]

  • Python jieba库用法及实例解析

    1.jieba库基本介绍 (1).jieba库概述 jieba是优秀的中文分词第三方库 - 中文文本需要通过分词获得单个的词语 - jieba是优秀的中文分词第三方库,需要额外安装 - jieba库提供三种分词模式,最简单只需掌握一个函数 (2).jieba分词的原理 Jieba分词依靠中文词库 - 利用一个中文词库,确定汉字之间的关联概率 - 汉字间概率大的组成词组,形成分词结果 - 除了分词,用户还可以添加自定义的词组 jieba库使用说明 (1).jieba分词的三种模式 精确模式.全模式

  • Python jieba库分词模式实例用法

    在中文分词中,jiebe库是最为常见的,主要的原因还是它独特的支持分词模式如:精确模式.全模式.搜索引擎模式.也对应着三种方式,包括jieba.cut()方法.jieba.lcut()方法.jieba.cut_for_search()方法.下面就为大家实例操作这些分词模式,以及方法的使用,一起来了解下吧. 全模式: import jieba seg_list = jieba.cut("南京市长江大桥欢迎你.", cut_all=True) print(type(seg_list),se

  • Python基于jieba库进行简单分词及词云功能实现方法

    本文实例讲述了Python基于jieba库进行简单分词及词云功能实现方法.分享给大家供大家参考,具体如下: 目标: 1.导入一个文本文件 2.使用jieba对文本进行分词 3.使用wordcloud包绘制词云 环境: Python 3.6.0 |Anaconda 4.3.1 (64-bit) 工具: jupyter notebook 从网上下载了一篇小说<老九门>,以下对这篇小说进行分词,并绘制词云图. 分词使用最流行的分词包jieba,参考:https://github.com/fxsjy/

  • python jieba库的基本使用

    一.jieba库概述 jieba是优秀的中文分词第三方库 中文文本需要通过分词获得单个的词语 jieba是优秀的中文分词第三方库,需要额外安装 jieba库提供三种分词模式,最简单只需要掌握一个函数 二.jieba库安装 pip install jieba 三.jieba分词的原理 jieba分词依靠中文词库 利用一个中文词库,确定汉字之间的关联概率 汉字间概率大的组成词组,形成分词结果 四.jieba分词的3种模式 精确模式:把文本精确地切分开,不存在冗余单词(最常用) 全模式:把文本中所有可

  • Python中jieba库的使用方法

    目录 一.jieba库的安装 二.jieba三种模式的使用 三.jieba 分词简单应用 四.扩展:英文单词统计 jieba库是一款优秀的 Python 第三方中文分词库,jieba 支持三种分词模式:精确模式.全模式和搜索引擎模式,下面是三种模式的特点. 精确模式:试图将语句最精确的切分,不存在冗余数据,适合做文本分析 全模式:将语句中所有可能是词的词语都切分出来,速度很快,但是存在冗余数据 搜索引擎模式:在精确模式的基础上,对长词再次进行切分 一.jieba库的安装 因为 jieba 是一个

  • Python第三方库jieba库与中文分词全面详解

    目录 一.什么是jieba库 二.jieba分词原理 三.jieba库支持的三种分词模式 1.精确模式 2.全模式 3.搜索引擎模式 四.jieba库常用函数 五.jieba实操 练习一(jieba.lcut)精确模式 练习二(jieba.lcut(s,cut_all=True) )全模式 练习三(jieba.lcut_for_search)搜索引擎模式 练习四(jieba.add_word(w))增加新词 总结 一.什么是jieba库 jieba是优秀的中文分词第三方库,由于中文文本之间每个汉

  • python机器学习库常用汇总

    汇总整理一套Python网页爬虫,文本处理,科学计算,机器学习和数据挖掘的兵器谱. 1. Python网页爬虫工具集 一个真实的项目,一定是从获取数据开始的.无论文本处理,机器学习和数据挖掘,都需要数据,除了通过一些渠道购买或者下载的专业数据外,常常需要大家自己动手爬数据,这个时候,爬虫就显得格外重要了,幸好,Python提供了一批很不错的网页爬虫工具框架,既能爬取数据,也能获取和清洗数据,也就从这里开始了: 1.1 Scrapy 鼎鼎大名的Scrapy,相信不少同学都有耳闻,课程图谱中的很多课

  • Python应用库大全总结

    学Python,想必大家都是从爬虫开始的吧.毕竟网上类似的资源很丰富,开源项目也非常多. Python学习网络爬虫主要分3个大的版块:抓取,分析,存储 当我们在浏览器中输入一个url后回车,后台会发生什么? 简单来说这段过程发生了以下四个步骤: 查找域名对应的IP地址. 向IP对应的服务器发送请求. 服务器响应请求,发回网页内容. 浏览器解析网页内容. 网络爬虫要做的,简单来说,就是实现浏览器的功能.通过指定url,直接返回给用户所需要的数据,而不需要一步步人工去操纵浏览器获取. 抓取这一步,你

  • Python常用库大全及简要说明

    环境管理 管理 Python 版本和环境的工具 p:非常简单的交互式 python 版本管理工具.官网 pyenv:简单的 Python 版本管理工具.官网 Vex:可以在虚拟环境中执行命令.官网 virtualenv:创建独立 Python 环境的工具.官网 virtualenvwrapper:virtualenv 的一组扩展.官网 buildout:在隔离环境初始化后使用声明性配置管理.官网 包管理 管理包和依赖的工具. pip:Python 包和依赖关系管理工具.官网 pip-tools:

  • 常用python爬虫库介绍与简要说明

    这个列表包含与网页抓取和数据处理的Python库 python网络库 通用 urllib -网络库(stdlib). requests -网络库. grab – 网络库(基于pycurl). pycurl – 网络库(绑定libcurl). urllib3 – Python HTTP库,安全连接池.支持文件post.可用性高. httplib2 – 网络库. RoboBrowser – 一个简单的.极具Python风格的Python库,无需独立的浏览器即可浏览网页. MechanicalSoup

随机推荐