Java判断线程池线程是否执行完毕

在使用多线程的时候有时候我们会使用 java.util.concurrent.Executors的线程池,当多个线程异步执行的时候,我们往往不好判断是否线程池中所有的子线程都已经执行完毕,但有时候这种判断却很有用,例如我有个方法的功能是往一个文件异步地写入内容,我需要在所有的子线程写入完毕后在文件末尾写“---END---”及关闭文件流等,这个时候我就需要某个标志位可以告诉我是否线程池中所有的子线程都已经执行完毕,我使用这种方式来判断。

public class MySemaphore {

  public static void main(String[] args) throws IOException, InterruptedException {
    final File stream = new File("c:\\temp\\stonefeng\\stream.txt");
    final OutputStream os = new FileOutputStream(stream);
    final OutputStreamWriter writer = new OutputStreamWriter(os);
    final Semaphore semaphore = new Semaphore(10);
    ExecutorService exec = Executors.newCachedThreadPool();

    final long start = System.currentTimeMillis();
    for (int i = 0; i < 10000000; i++) {
      final int num = i;
      Runnable task = new Runnable() {
        @Override
        public void run() {
          try {
            semaphore.acquire();
            writer.write(String.valueOf(num)+"\n");
            semaphore.release();
          } catch (IOException e) {
            e.printStackTrace();
          } catch (InterruptedException e) {
            e.printStackTrace();
          }
        }
      };
      exec.submit(task);
    }
    exec.shutdown();
    while(true){
      if(exec.isTerminated()){
        writer.write("---END---\n");
        writer.close();
        System.out.println("所有的子线程都结束了!");
        break;
      }
      Thread.sleep(1000);
    }
    final long end = System.currentTimeMillis();
    System.out.println((end-start)/1000);
  }
}

当调用ExecutorService.shutdown方法的时候,线程池不再接收任何新任务,但此时线程池并不会立刻退出,直到添加到线程池中的任务都已经处理完成,才会退出。在调用shutdown方法后我们可以在一个死循环里面用isTerminated方法判断是否线程池中的所有线程已经执行完毕,如果子线程都结束了,我们就可以做关闭流等后续操作了。

判断线程池中的线程是否全部执行完毕的另外一种解决方案则是使用闭锁(CountDownLatch)来实现,CountDownLatch是一种灵活的闭锁实现,它可以使一个或多个线程等待一组事件发生。闭锁状态包括一个计数器,该计数器被初始化为一个正数,表示需要等待的事件数量。countDown方法递减计数器,表示有一个事件已经发生了,而await方法等待计数器达到零,即表示需要等待的事情都已经发生。可以使用闭锁来这样设计程序达到目的:

public class CountDownLatchApproach {
  public static void main(String[] args) throws IOException, InterruptedException {
    final int nThreads = 10;
    final CountDownLatch endGate = new CountDownLatch(nThreads);
    final File stream = new File("c:\\temp\\stonefeng\\stream.txt");
    final OutputStream os = new FileOutputStream(stream);
    final OutputStreamWriter writer = new OutputStreamWriter(os);
    ExecutorService exec = Executors.newCachedThreadPool();
    for (int i = 0; i < nThreads; i++) {
      final int num = i;
      Runnable task = new Runnable() {
        @Override
        public void run() {
          try {
            writer.write(String.valueOf(num)+"\n");
          } catch (IOException e) {
            e.printStackTrace();
          } finally {
            endGate.countDown();
          }
        }
      };
      exec.submit(task);
    }
    endGate.await();
    writer.write("---END---\n");
    writer.close();
  }
}

这种解决方案虽然可以达到目的但是性能差到没朋友,我更倾向于使用第一种方案。

现在我们有了更优雅的第三种方案,它的执行性能也不错。

public class MySemaphore {

  public static void main(String[] args) throws IOException, InterruptedException {
    final File stream = new File("c:\\temp\\stonefeng\\stream.txt");
    final OutputStream os = new FileOutputStream(stream);
    final OutputStreamWriter writer = new OutputStreamWriter(os);
    final Semaphore semaphore = new Semaphore(10);
    ExecutorService exec = Executors.newCachedThreadPool();

    final long start = System.currentTimeMillis();
    for (int i = 0; i < 10000000; i++) {
      final int num = i;
      Runnable task = new Runnable() {
        @Override
        public void run() {
          try {
            semaphore.acquire();
            writer.write(String.valueOf(num)+"\n");
            semaphore.release();
          } catch (IOException e) {
            e.printStackTrace();
          } catch (InterruptedException e) {
            e.printStackTrace();
          }
        }
      };
      exec.submit(task);
    }
    exec.shutdown();
    exec.awaitTermination(1, TimeUnit.HOURS);
    writer.write("---END---\n");
    writer.close();
    System.out.println("ËùÓеÄ×ÓÏ̶߳¼½áÊøÁË£¡");
    final long end = System.currentTimeMillis();
    System.out.println((end-start)/1000);
  }
}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • java 线程池的实现方法

    线程池有以下几种实现方式: Executors目前提供了5种不同的线程池创建配置: 1.newCachedThreadPool() 它是用来处理大量短时间工作任务的线程池,具有几个鲜明特点:它会试图缓存线程并重用,当无缓存线程可用时,就会创建新的工作线程:如果线程闲置时间超过60秒,则被终止并移除缓存:长时间闲置时,这种线程池,不会消耗什么资源.其内部使用SynchronousQueue作为工作队列. 2.newFixedThreadPool(int nThreads) 重用指定数目(nThre

  • Java线程池ForkJoinPool实例解析

    这篇文章主要介绍了Java线程池ForkJoinPool实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 背景:ForkJoinPool的优势在于,可以充分利用多cpu,多核cpu的优势,把一个任务拆分成多个"小任务",把多个"小任务"放到多个处理器核心上并行执行:当多个"小任务"执行完成之后,再将这些执行结果合并起来即可.这种思想值得学习. import java.io.IOExcept

  • Java线程池用法实战案例分析

    本文实例讲述了Java线程池用法.分享给大家供大家参考,具体如下: 一 使用newSingleThreadExecutor创建一个只包含一个线程的线程池 1 代码 import java.util.concurrent.*; public class executorDemo { public static void main( String[] args ) { ExecutorService executor = Executors.newSingleThreadExecutor(); ex

  • Java线程池的应用实例分析

    本文实例讲述了Java线程池的应用.分享给大家供大家参考,具体如下: 一 使用Future与Callable来计算斐波那契数列 1 代码 import java.util.concurrent.*; public class FutureCallableDemo { static long fibonacci(long n) { if (n == 1 ||n == 2) return 1; else return fibonacci(n - 1) + fibonacci(n - 2); } pu

  • Java手动配置线程池过程详解

    线程池中,常见有涉及到的: ExecutorService executorService = Executors.newSingleThreadExecutor(); ExecutorService executorService1 = Executors.newCachedThreadPool(); ExecutorService executorService2 = Executors.newFixedThreadPool(3); 关于Executors和ExecutorService从记

  • Java 线程状态和等待唤醒机制和线程池的实现

    1.概念 线程一共有6中状态,相互之间可以互相转换. 等待唤醒案例(线程之间的通信) 实现: 等待唤醒案例:线程之间的通信 创建一个顾客线程(消费者):告知老板要的包子的种类和数量,调用wait方法,放弃cpu的执行,进入到WAITING状态(无限等待) 创建一个老板线程(生产者):花了5秒做包子,做好包子之后,调用notify方法,唤醒顾客吃包子 注意: 顾客和老板线程必须使用同步代码块包裹起来,保证等待和唤醒只能有一个在执行 同步使用的锁对象必须保证唯一 只有锁对象才能调用wait和noti

  • JAVA线程池专题(概念和作用)

    线程池的作用 我们在用一个东西的时候,首先得搞明白一个问题.这玩意是干嘛的,为啥要用这个,用别的不行吗.那么一个一个解决这些问题 我们之前都用过数据库连接池,线程池的作用和连接池有点类似,频繁的创建,销毁线程会造成大量的不必要的性能开销,所以这个时候就出现了一个东西统一的管理线程,去负责线程啥时候销毁,啥时候创建,以及维持线程的状态,当程序需要使用线程的时候,直接从线程池拿,当程序用完了之后,直接把线程放回线程池,不需要去管线程的生命周期,专心的执行业务代码就行. 当然,如果非要是自己想手动ne

  • 到底如何设置Java线程池的大小的方法示例

    在我们日常业务开发过程中,或多或少都会用到并发的功能.那么在用到并发功能的过程中,就肯定会碰到下面这个问题 并发线程池到底设置多大呢? 通常有点年纪的程序员或许都听说这样一个说法 (其中 N 代表 CPU 的个数) CPU 密集型应用,线程池大小设置为 N + 1 IO 密集型应用,线程池大小设置为 2N 这个说法到底是不是正确的呢? 其实这是极不正确的.那为什么呢? 首先我们从反面来看,假设这个说法是成立的,那我们在一台服务器上部署多少个服务都无所谓了.因为线程池的大小只能服务器的核数有关,所

  • Java线程池ThreadPoolExecutor原理及使用实例

    引导 要求:线程资源必须通过线程池提供,不允许在应用自行显式创建线程: 说明:使用线程池的好处是减少在创建和销毁线程上所花的时间以及系统资源的开销,解决资源不足的问题.如果不使用线程池,有可能造成系统创建大量同类线程而导致消耗内存或者"过度切换"的问题. 线程池介绍线程池概述   线程池,顾名思义是一个放着线程的池子,这个池子的线程主要是用来执行任务的.当用户提交任务时,线程池会创建线程去执行任务,若任务超过了核心线程数的时候,会在一个任务队列里进行排队等待,这个详细流程,我们会后面细

  • Java中如何判断线程池任务已执行完成

    目录 不判断的问题 方法1:isTerminated 缺点分析 扩展:线程池的所有状态 方法2:getCompletedTaskCount 方法说明 优缺点分析 方法3:CountDownLatch 优缺点分析 方法4:CyclicBarrier 方法说明 优缺点分析 总结 前言: 很多场景下,我们需要等待线程池的所有任务都执行完,然后再进行下一步操作.对于线程 Thread 来说,很好实现,加一个 join 方法就解决了,然而对于线程池的判断就比较麻烦了. 我们本文提供 4 种判断线程池任务是

  • Java判断线程池线程是否执行完毕

    在使用多线程的时候有时候我们会使用 java.util.concurrent.Executors的线程池,当多个线程异步执行的时候,我们往往不好判断是否线程池中所有的子线程都已经执行完毕,但有时候这种判断却很有用,例如我有个方法的功能是往一个文件异步地写入内容,我需要在所有的子线程写入完毕后在文件末尾写"---END---"及关闭文件流等,这个时候我就需要某个标志位可以告诉我是否线程池中所有的子线程都已经执行完毕,我使用这种方式来判断. public class MySemaphore

  • 深入理解Java编程线程池的实现原理

    在前面的文章中,我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题: 如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间. 那么有没有一种办法使得线程可以复用,就是执行完一个任务,并不被销毁,而是可以继续执行其他的任务? 在Java中可以通过线程池来达到这样的效果.今天我们就来详细讲解一下Java的线程池,首先我们从最核心的ThreadPoolExecutor类中的方法讲起,

  • 一文彻底搞懂java多线程和线程池

    目录 什么是线程 一. Java实现线程的三种方式 1.1.继承Thread类 1.2.实现Runnable接口,并覆写run方法 二. Callable接口 2.1 Callable接口 2.2 Future接口 2.3 Future实现类是FutureTask. 三. Java线程池 3.1.背景 3.2.作用 3.3.应用范围 四. Java 线程池框架Executor 4.1.类图: 4.2 核心类ThreadPoolExecutor: 4.3 ThreadPoolExecutor逻辑结

  • java 线程池如何执行策略又拒绝哪些策略

    目录 线程池执行流程 线程池拒绝策略 DiscardPolicy拒绝策略 AbortPolicy拒绝策略 自定义拒绝策略 总结 前言: 聊到线程池就一定会聊到线程池的执行流程,也就是当有一个任务进入线程池之后,线程池是如何执行的?我们今天就来聊聊这个话题.线程池是如何执行的?线程池的拒绝策略有哪些? 线程池执行流程 想要真正的了解线程池的执行流程,就得先从线程池的执行方法 execute() 说起,execute() 实现源码如下: public void execute(Runnable co

  • Java 使用线程池执行多个任务的示例

    在执行一系列带有IO操作(例如下载文件),且互不相关的异步任务时,采用多线程可以很极大的提高运行效率.线程池包含了一系列的线程,并且可以管理这些线程.例如:创建线程,销毁线程等.本文将介绍如何使用Java中的线程池执行任务. 1 任务类型 在使用线程池执行任务之前,我们弄清楚什么任务可以被线程池调用.按照任务是否有返回值可以将任务分为两种,分别是实现Runnable的任务类(无参数无返回值)和实现Callable接口的任务类(无参数有返回值).在打代码时根据需求选择对应的任务类型. 1.1 实现

  • Java中Future、FutureTask原理以及与线程池的搭配使用

    Java中的Future和Future通常和线程池搭配使用,用来获取线程池返回执行后的返回值.我们假设通过Executors工厂方法构建一个线程池es ,es要执行某个任务有两种方式,一种是执行 es.execute(runnable) ,这种情况是没有返回值的: 另外一种情况是执行 es.submit(runnale)或者 es.submit(callable) ,这种情况会返回一个Future的对象,然后调用Future的get()来获取返回值. Future public interfac

  • 谈谈Java 线程池

    一.引言 池的概念大家并不陌生,数据库连接池.线程池等...大体来说,有三个优点: 降低资源消耗. 提高响应速度. 便于统一管理. 以上是 "池化" 技术的相同特点,至于他们之间的不同点这里不讲,两者都是为了提高性能和效率,抛开实际做连连看找不同,没有意义. 同样,类比于线程池来说: 降低资源消耗: 重复利用线程池中已经创建的线程,相比之下省去了线程创建和销毁的性能消耗. 提高响应速度: 当有任务创建时,不必等待线程创建,可以立即执行. 便于统一管理: 使用线程池,可以对线程统一管理,

  • java 优雅关闭线程池的方案

    我们经常在项目中使用的线程池,但是是否关心过线程池的关闭呢,可能很多时候直接再项目中直接创建线程池让它一直运行当任务执行结束不在需要了也不去关闭,这其实是存在非常大的风险的,大量的线程常驻在后台对系统资源的占用是巨大的 ,甚至引发异常.所以在我们平时使用线程池时需要注意优雅的关闭,这样可以保证资源的管控. 在 Java 中和关闭线程池相关的方法主要有如下: void shutdown() List<Runnable> shutDownNow boolean awaitTermination b

  • 深入理解Java线程池从设计思想到源码解读

    线程池:从设计思想到源码解析 前言初识线程池线程池优势线程池设计思路 深入线程池构造方法任务队列拒绝策略线程池状态初始化&容量调整&关闭 使用线程池ThreadPoolExecutorExecutors封装线程池 解读线程池execute()addWorker()Worker类runWorker()processWorkerExit() 前言 各位小伙伴儿,春节已经结束了,在此献上一篇肝了一个春节假期的迟来的拜年之作,希望读者朋友们都能有收获. 根据穆氏哲学,投入越多,收获越大.我作此文时

随机推荐