TensorFlow tf.nn.conv2d_transpose是怎样实现反卷积的

今天来介绍一下Tensorflow里面的反卷积操作,网上反卷积的用法的介绍比较少,希望这篇教程可以帮助到各位

反卷积出自这篇论文:Deconvolutional Networks,有兴趣的同学自行了解

首先无论你如何理解反卷积,请时刻记住一点,反卷积操作是卷积的反向

如果你随时都记住上面强调的重点,那你基本就理解一大半了,接下来通过一些函数的介绍为大家强化这个观念

conv2d_transpose(value, filter, output_shape, strides, padding="SAME", data_format="NHWC", name=None)

除去name参数用以指定该操作的name,与方法有关的一共六个参数:
第一个参数value:指需要做反卷积的输入图像,它要求是一个Tensor
第二个参数filter:卷积核,它要求是一个Tensor,具有[filter_height, filter_width, out_channels, in_channels]这样的shape,具体含义是[卷积核的高度,卷积核的宽度,卷积核个数,图像通道数]
第三个参数output_shape:反卷积操作输出的shape,细心的同学会发现卷积操作是没有这个参数的,那这个参数在这里有什么用呢?下面会解释这个问题
第四个参数strides:反卷积时在图像每一维的步长,这是一个一维的向量,长度4
第五个参数padding:string类型的量,只能是"SAME","VALID"其中之一,这个值决定了不同的卷积方式
第六个参数data_format:string类型的量,'NHWC'和'NCHW'其中之一,这是tensorflow新版本中新加的参数,它说明了value参数的数据格式。'NHWC'指tensorflow标准的数据格式[batch, height, width, in_channels],'NCHW'指Theano的数据格式,[batch, in_channels,height, width],当然默认值是'NHWC'

开始之前务必了解卷积的过程,参考我的另一篇文章:https://www.jb51.net/article/177798.htm

首先定义一个单通道图和3个卷积核

x1 = tf.constant(1.0, shape=[1,3,3,1])
kernel = tf.constant(1.0, shape=[3,3,3,1])

先别着急!我们不直接用反卷积函数,而是再定义一些图

x2 = tf.constant(1.0, shape=[1,6,6,3])
x3 = tf.constant(1.0, shape=[1,5,5,3])

x2是6×6的3通道图,x3是5×5的3通道图
好了,接下来对x3做一次卷积操作

y2 = tf.nn.conv2d(x3, kernel, strides=[1,2,2,1], padding="SAME")

所以返回的y2是一个单通道的图,如果你了解卷积过程,很容易看出来y2是[1,3,3,1]的Tensor,y2的结果如下:

[[[[ 12.]
  [ 18.]
  [ 12.]]

 [[ 18.]
  [ 27.]
  [ 18.]]

 [[ 12.]
  [ 18.]
  [ 12.]]]]

又一个很重要的部分!tf.nn.conv2d中的filter参数,是[filter_height, filter_width, in_channels, out_channels]的形式,而tf.nn.conv2d_transpose中的filter参数,是[filter_height, filter_width, out_channels,in_channels]的形式,注意in_channels和out_channels反过来了!因为两者互为反向,所以输入输出要调换位置

既然y2是卷积操作的返回值,那我们当然可以对它做反卷积,反卷积操作返回的Tensor,应该和x3的shape是一样的(不难理解,因为是卷积的反过程)

y3 = tf.nn.conv2d_transpose(y2,kernel,output_shape=[1,5,5,3], strides=[1,2,2,1],padding="SAME")

好,现在返回的y3果然是[1,5,5,3]的Tensor,结果如下:

[[[[ 12. 12. 12.]
  [ 30. 30. 30.]
  [ 18. 18. 18.]
  [ 30. 30. 30.]
  [ 12. 12. 12.]]

 [[ 30. 30. 30.]
  [ 75. 75. 75.]
  [ 45. 45. 45.]
  [ 75. 75. 75.]
  [ 30. 30. 30.]]

 [[ 18. 18. 18.]
  [ 45. 45. 45.]
  [ 27. 27. 27.]
  [ 45. 45. 45.]
  [ 18. 18. 18.]]

 [[ 30. 30. 30.]
  [ 75. 75. 75.]
  [ 45. 45. 45.]
  [ 75. 75. 75.]
  [ 30. 30. 30.]]

 [[ 12. 12. 12.]
  [ 30. 30. 30.]
  [ 18. 18. 18.]
  [ 30. 30. 30.]
  [ 12. 12. 12.]]]]

这个结果是怎么得来的?可以用一张动图来说明,图片来源:反卷积的真正含义

看起来,tf.nn.conv2d_transpose的output_shape似乎是多余的,因为知道了原图,卷积核,步长显然是可以推出输出图像大小的,那为什么要指定output_shape呢?
看这样一种情况:

y4 = tf.nn.conv2d(x2, kernel, strides=[1,2,2,1], padding="SAME")

我们把上面的x2也做卷积,获得shape为[1,3,3,1]的y4如下:

[[[[ 27.]
  [ 27.]
  [ 18.]]

 [[ 27.]
  [ 27.]
  [ 18.]]

 [[ 18.]
  [ 18.]
  [ 12.]]]]

[1,6,6,3]和[1,5,5,3]的图经过卷积得到了相同的大小,[1,3,3,1]
让我们再反过来看,那么[1,3,3,1]的图反卷积后得到什么呢?产生了两种情况。所以这里指定output_shape是有意义的,当然随意指定output_shape是不允许的,如下情况程序会报错:

y5 = tf.nn.conv2d_transpose(x1,kernel,output_shape=[1,10,10,3],strides=[1,2,2,1],padding="SAME")

以上是stride为2的情况,为1时也类似,当卷积核大于原图时,默认用VALID方式(用SAME就无意义了)参考下图:

程序清单:

import tensorflow as tf

x1 = tf.constant(1.0, shape=[1,3,3,1])

x2 = tf.constant(1.0, shape=[1,6,6,3])

x3 = tf.constant(1.0, shape=[1,5,5,3])

kernel = tf.constant(1.0, shape=[3,3,3,1])

y1 = tf.nn.conv2d_transpose(x1,kernel,output_shape=[1,6,6,3],
  strides=[1,2,2,1],padding="SAME")

y2 = tf.nn.conv2d(x3, kernel, strides=[1,2,2,1], padding="SAME")

y3 = tf.nn.conv2d_transpose(y2,kernel,output_shape=[1,5,5,3],
  strides=[1,2,2,1],padding="SAME")

y4 = tf.nn.conv2d(x2, kernel, strides=[1,2,2,1], padding="SAME")

'''
Wrong!!This is impossible
y5 = tf.nn.conv2d_transpose(x1,kernel,output_shape=[1,10,10,3],strides=[1,2,2,1],padding="SAME")
'''
sess = tf.Session()
tf.global_variables_initializer().run(session=sess)
x1_decov, x3_cov, y2_decov, x2_cov=sess.run([y1,y2,y3,y4])
print(x1_decov.shape)
print(x3_cov.shape)
print(y2_decov.shape)
print(x2_cov.shape)

到此这篇关于TensorFlow tf.nn.conv2d_transpose是怎样实现反卷积的 的文章就介绍到这了,更多相关TensorFlow tf.nn.conv2d_transpose 反卷积内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • TensorFlow tf.nn.conv2d实现卷积的方式

    实验环境:tensorflow版本1.2.0,python2.7 介绍 惯例先展示函数: tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 除去name参数用以指定该操作的name,与方法有关的一共五个参数: input: 指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,具体含义是[

  • TensorFlow tf.nn.conv2d_transpose是怎样实现反卷积的

    今天来介绍一下Tensorflow里面的反卷积操作,网上反卷积的用法的介绍比较少,希望这篇教程可以帮助到各位 反卷积出自这篇论文:Deconvolutional Networks,有兴趣的同学自行了解 首先无论你如何理解反卷积,请时刻记住一点,反卷积操作是卷积的反向 如果你随时都记住上面强调的重点,那你基本就理解一大半了,接下来通过一些函数的介绍为大家强化这个观念 conv2d_transpose(value, filter, output_shape, strides, padding="SA

  • Tensorflow tf.nn.atrous_conv2d如何实现空洞卷积的

    实验环境:tensorflow版本1.2.0,python2.7 介绍 关于空洞卷积的理论可以查看以下链接,这里我们不详细讲理论: 1.Long J, Shelhamer E, Darrell T, et al. Fully convolutional networks for semantic segmentation[C]. Computer Vision and Pattern Recognition, 2015. 2.Yu, Fisher, and Vladlen Koltun. "Mu

  • TensorFlow tf.nn.max_pool实现池化操作方式

    max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似 有些地方可以从卷积去参考[TensorFlow] tf.nn.conv2d实现卷积的方式 tf.nn.max_pool(value, ksize, strides, padding, name=None) 参数是四个,和卷积很类似: 第一个参数value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape 第

  • Tensorflow tf.nn.depthwise_conv2d如何实现深度卷积的

    实验环境:tensorflow版本1.2.0,python2.7 介绍 depthwise_conv2d来源于深度可分离卷积: Xception: Deep Learning with Depthwise Separable Convolutions tf.nn.depthwise_conv2d(input,filter,strides,padding,rate=None,name=None,data_format=None) 除去name参数用以指定该操作的name,data_format指定

  • TensorFlow tf.nn.softmax_cross_entropy_with_logits的用法

    在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化的值 tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None) 除去name参数用以指定该操作的name,与方法有关的一共两个参数: 第一个参数logits:就是神经网络最后一层的输出,如果有batch的话,它的大小就是[bat

  • 对tensorflow中tf.nn.conv1d和layers.conv1d的区别详解

    在用tensorflow做一维的卷积神经网络的时候会遇到tf.nn.conv1d和layers.conv1d这两个函数,但是这两个函数有什么区别呢,通过计算得到一些规律. 1.关于tf.nn.conv1d的解释,以下是Tensor Flow中关于tf.nn.conv1d的API注解: Computes a 1-D convolution given 3-D input and filter tensors. Given an input tensor of shape [batch, in_wi

  • python人工智能tensorflow函数tf.nn.dropout使用方法

    目录 前言 tf.nn.dropout函数介绍 例子 代码 keep_prob = 0.5 keep_prob = 1 前言 神经网络在设置的神经网络足够复杂的情况下,可以无限逼近一段非线性连续函数,但是如果神经网络设置的足够复杂,将会导致过拟合(overfitting)的出现,就好像下图这样. 看到这个蓝色曲线,我就知道: 很明显蓝色曲线是overfitting的结果,尽管它很好的拟合了每一个点的位置,但是曲线是歪歪曲曲扭扭捏捏的,这个的曲线不具有良好的鲁棒性,在实际工程实验中,我们更希望得到

  • 使用 tf.nn.dynamic_rnn 展开时间维度方式

    对于单个的 RNNCell , 使用色的 call 函数进行运算时 ,只是在序列时间上前进了一步 . 如使用 x1. ho 得到此h1, 通过 x2 . h1 得到 h2 等 . tf.nn.dynamic_rnn的作用: 如果序列长度为n,要调用n次call函数,比较麻烦.对此,TensorFlow提供了一个tf.nn.dynamic_mn函数,使用该函数相当于调用了n次call函数.通过{ho, x1 , x2,-, xn} 直接得到{h1 , h2,-, hn} . 具体来说,设输入数据的

  • 关于tf.nn.dynamic_rnn返回值详解

    函数原型 tf.nn.dynamic_rnn( cell, inputs, sequence_length=None, initial_state=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=False, scope=None ) 实例讲解: import tensorflow as tf import numpy as np n_steps = 2 n_inputs = 3 n_neuron

随机推荐