Python 实现中值滤波、均值滤波的方法

红包:

Lena椒盐噪声图片:

# -*- coding: utf-8 -*-
"""
Created on Sat Oct 14 22:16:47 2017

@author: Don
"""

from tkinter import *
from skimage import io
import numpy as np

im=io.imread('lena_sp.jpg', as_grey=True)
im_copy_med = io.imread('lena_sp.jpg', as_grey=True)
im_copy_mea = io.imread('lena_sp.jpg', as_grey=True)
#io.imshow(im)
for i in range(0,im.shape[0]):
 for j in range(0,im.shape[1]):
  im_copy_med[i][j]=im[i][j]
  im_copy_mea[i][j]=im[i][j]
#ui
root = Tk()
root.title("lena")
root.geometry('300x200')

medL = Label(root, text="中值滤波:")
medL.pack()
med_text = StringVar()
med = Entry(root, textvariable = med_text)
med_text.set("")
med.pack()

meaL = Label(root, text="均值滤波:")
meaL.pack()
mea_text = StringVar()
mea = Entry(root, textvariable = mea_text)
mea_text.set("")
mea.pack()

def m_filter(x, y, step):
 sum_s=[]
 for k in range(-int(step/2),int(step/2)+1):
  for m in range(-int(step/2),int(step/2)+1):
   sum_s.append(im[x+k][y+m])
 sum_s.sort()
 return sum_s[(int(step*step/2)+1)]

def mean_filter(x, y, step):
 sum_s = 0
 for k in range(-int(step/2),int(step/2)+1):
  for m in range(-int(step/2),int(step/2)+1):
   sum_s += im[x+k][y+m] / (step*step)
 return sum_s

def on_click():
 if(med_text):
  medStep = int(med_text.get())
  for i in range(int(medStep/2),im.shape[0]-int(medStep/2)):
   for j in range(int(medStep/2),im.shape[1]-int(medStep/2)):
    im_copy_med[i][j] = m_filter(i, j, medStep)
 if(mea_text):
  meaStep = int(mea_text.get())
  for i in range(int(meaStep/2),im.shape[0]-int(meaStep/2)):
   for j in range(int(meaStep/2),im.shape[1]-int(meaStep/2)):
    im_copy_mea[i][j] = mean_filter(i, j, meaStep)
 io.imshow(im_copy_med)
 io.imsave(str(medStep) + 'med.jpg', im_copy_med)
 io.imshow(im_copy_mea)
 io.imsave(str(meaStep) + 'mea.jpg', im_copy_mea)

Button(root, text="filterGo", command = on_click).pack()

root.mainloop()

运行结果截图:

以上这篇Python 实现中值滤波、均值滤波的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • softmax及python实现过程解析

    相对于自适应神经网络.感知器,softmax巧妙低使用简单的方法来实现多分类问题. 功能上,完成从N维向量到M维向量的映射 输出的结果范围是[0, 1],对于一个sample的结果所有输出总和等于1 输出结果,可以隐含地表达该类别的概率 softmax的损失函数是采用了多分类问题中常见的交叉熵,注意经常有2个表达的形式 经典的交叉熵形式:L=-sum(y_right * log(y_pred)), 具体 简单版本是: L = -Log(y_pred),具体 这两个版本在求导过程有点不同,但是结果

  • python中实现控制小数点位数的方法

    前段时间遇到一个问题,python中怎么设置小数点位数,经过查资料,在这里整理了两种较为简单的方法: 法1:利用python内置的round()函数 a = 1.1314 a = 1.0000 a = 1.1267 b = round(a, 2) b = round(a, 2) b = round(a, 2) output: b=1.13 output: b=1.0 output: b=1.13 法2: a = 1.1314 a = 1.0000 a = 1.1267 b = '%.2f' %

  • Python下的Softmax回归函数的实现方法(推荐)

    Softmax回归函数是用于将分类结果归一化.但它不同于一般的按照比例归一化的方法,它通过对数变换来进行归一化,这样实现了较大的值在归一化过程中收益更多的情况. Softmax公式 Softmax实现方法1 import numpy as np def softmax(x): """Compute softmax values for each sets of scores in x.""" pass # TODO: Compute and re

  • 用Python和WordCloud绘制词云的实现方法(内附让字体清晰的秘笈)

    环境及模块: Win7 64位 Python 3.6.4 WordCloud 1.5.0 Pillow 5.0.0 Jieba 0.39 目标: 绘制安徽省2018年某些科技项目的词云,直观展示热点. 思路: 先提取项目的名称,再用Jieba分词后提取词汇:过滤掉"研发"."系列"等无意义的词:最后用WordCloud 绘制词云. 扩展: 词云默认是矩形的,本代码采用图片作为蒙版,产生异形词云图.这里用的图片是安徽省地图. 秘笈: 用网上的常规方法绘制的词云,字体有

  • python实现五子棋小游戏

    本文实例为大家分享了python实现五子棋小游戏的具体代码,供大家参考,具体内容如下 暑假学了十几天python,然后用pygame模块写了一个五子棋的小游戏,代码跟有缘人分享一下. import numpy as np import pygame import sys import traceback import copy from pygame.locals import * pygame.init() pygame.mixer.init() #颜色 background=(201,202

  • python 实现矩阵上下/左右翻转,转置的示例

    python中没有二维数组,用一个元素为list的list(matrix)保存矩阵,row为行数,col为列数 1. 上下翻转:只需要把每一行的list交换即可 for i in range(row // 2): matrix[i], matrix[row-1-i] = matrix[row-1-i], matrix[i] 2. 左右翻转:需要逐个交换元素 for m in matrix: for j in range(col // 2): m[j], m[col-1-j] = m[col-1-

  • TensorFlow实现Softmax回归模型

    一.概述及完整代码 对MNIST(MixedNational Institute of Standard and Technology database)这个非常简单的机器视觉数据集,Tensorflow为我们进行了方便的封装,可以直接加载MNIST数据成我们期望的格式.本程序使用Softmax Regression训练手写数字识别的分类模型. 先看完整代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist imp

  • python实现淘宝秒杀脚本

    本文实例为大家分享了python实现淘宝秒杀脚本的具体代码,供大家参考,具体内容如下 1.安装pycharm.网上教程很多. 2.安装 Selenium 库. Selenium支持很多浏览器,我选择的是Firefox浏览器. 因为我这里是Python3环境,自带的又pip,所以安装selenium直接使用pip安装 安装方法: --打开cmd: --输入命令进入Python36/Scripts(找到下图的目录)目录下: --输入命令 pip install selenium: --回车,等待自动

  • Python 实现中值滤波、均值滤波的方法

    红包: Lena椒盐噪声图片: # -*- coding: utf-8 -*- """ Created on Sat Oct 14 22:16:47 2017 @author: Don """ from tkinter import * from skimage import io import numpy as np im=io.imread('lena_sp.jpg', as_grey=True) im_copy_med = io.imrea

  • Python实现中值滤波去噪方式

    中值滤波器去噪: 中值滤波的主要原理是将数字图像中的某点用该点的邻域中各个像素值的中值所来代替,这样就能让目标像素周围能够更好的接近真实值,比如一张白纸上有一个黑点时,黑点的像素值比较大,经过中值滤波过后,黑点附近的像素值可能就会变小.经过中值滤波后一些相对孤立的噪声点就容易被清除掉,这样就能提高图像的质量. 所以中值滤波器去噪的一个优点就是对椒盐噪声的去除具有很好的效果,具体操作是选取一个中心邻域,然后给邻域类各个像素的灰度值按大小进行排序,选取排序序列中的中值作为该邻域中心点的像素值的灰度值

  • python spyder中读取txt为图片的方法

    有时候需要将一个环境中的图片可视化,但是可能这个环境下不方便,因此需要将这个环境下的图像数据保存下来,然后在另一个环境下查看,比如,有一个图像数据,image.txt,里面的数据是图像的像素值,范围是0-255,像素值之间以空格键分开,行与行之间是回车键分开,那么在Python Spyder环境下通过简单的几条语句就搞定: import numpy from skimage import io image = numpy.loadtxt("image.txt") io.imshow(i

  • 对python PLT中的image和skimage处理图片方法详解

    用PLT比较轻量级,用opencv是比较重量级 import numpy as np from PIL import Image if __name__ == '__main__': image_file = '/Users/mac/Documents/学习文档/机器学习/5.Package/son.png' height = 100 #假定写入图片的高度是100 img = Image.open(image_file) img_width, img_height = img.size #获取i

  • 在python image 中安装中文字体的实现方法

    如果一些应用需要到中文字体(如果pygraphviz,不安装中文字体,中文会显示乱码),就要在image 中安装中文字体. 默认 python image 是不包含中文字体的: mac-temp:relation_graph test$ docker run --rm -it python bash root@36d738e2084c:/# fc-list /usr/share/fonts/truetype/dejavu/DejaVuSerif-Bold.ttf: DejaVu Serif:st

  • Python OpenCV中的drawMatches()关键匹配绘制方法

    目录 作用说明 函数原型 参数详解 结果 作用说明 该方法被用于绘制关键点的匹配情况.我们看到的许多匹配结果都是使用这一方法绘制的——一左一右两张图像,匹配的关键点之间用线条链接. 函数原型 cv.drawMatches( img1, keypoints1, img2, keypoints2, matches1to2, outImg[, matchColor[, singlePointColor[, matchesMask[, flags]]]]) -> outImg cv.drawMatche

  • python线程中的同步问题及解决方法

    多线程开发可能遇到的问题 假设两个线程t1和t2都要对num=0进行增1运算,t1和t2都各对num修改1000000次,num的最终的结果应该为2000000.但是由于是多线程访问,有可能出现下面情况: from threading import Thread import time num = 0 def test1(): global num for i in range(1000000): num += 1 print("--test1--num=%d" % num) def

  • opencv+python实现均值滤波

    本文实例为大家分享了opencv+python实现均值滤波的具体代码,供大家参考,具体内容如下 原理 均值滤波其实就是对目标像素及周边像素取平均值后再填回目标像素来实现滤波目的的方法,当滤波核的大小是3×3 3\times 33×3时,则取其自身和周围8个像素值的均值来代替当前像素值. 均值滤波也可以看成滤波核的值均为 1 的滤波. 优点:算法简单,计算速度快: 缺点:降低噪声的同时使图像产生模糊,特别是景物的边缘和细节部分. 代码 import cv2 as cv import numpy a

  • 利用Python代码实现数据可视化的5种方法详解

    前言 数据科学家并不逊色于艺术家.他们用数据可视化的方式绘画,试图展现数据内隐藏的模式或表达对数据的见解.更有趣的是,一旦接触到任何可视化的内容.数据时,人类会有更强烈的知觉.认知和交流. 数据可视化是数据科学家工作中的重要组成部分.在项目的早期阶段,你通常会进行探索性数据分析(Exploratory Data Analysis,EDA)以获取对数据的一些理解.创建可视化方法确实有助于使事情变得更加清晰易懂,特别是对于大型.高维数据集.在项目结束时,以清晰.简洁和引人注目的方式展现最终结果是非常

  • opencv 图像滤波(均值,方框,高斯,中值)

    为什么要使用滤波 消除图像中的噪声成分叫作图像的平滑化或滤波操作.信号或图像的能量大部分集中在幅度谱的低频和中频段是很常见的,而在较高频段,感兴趣的信息经常被噪声淹没.因此一个能降低高频成分幅度的滤波器就能够减弱噪声的影响. 如下图,左图带有椒盐噪声,右图为使用中值滤波处理后的图片. 图像滤波的目的有两个:一是抽出对象的特征作为图像识别的特征模式;另一个是为适应图像处理的要求,消除图像数字化时所混入的噪声. python +opencv讲解 均值滤波 含义 如图:如果我们想对红色点进行处理,则它

随机推荐