R语言绘制数据可视化Dumbbell plot哑铃图

目录
  • Step1. 绘图数据的准备
  • Step3. 绘图所需package的安装、调用
  • Step4. 绘图
    • 改变size的大小
    • 调整顺序

又是一年春来到,小仙祝大家在新的一年开开心心、顺顺利利!
今天给大家分享的图是哑铃图(Dumbbell plot)。

Step1. 绘图数据的准备

首先要把你想要绘图的数据调整成R语言可以识别的格式,建议大家在excel中保存成csv格式。
作图数据格式如下:

Step2. 绘图数据的读取

data <- read.csv(“your file path”, header = T, check.names=F)
#注释:header=T表示数据中的第一行是列名,如果没有列名就用header=F
#注释:R读取数据的时候,默认会把列名里的空格变成 ".",check.names=F就不会变了

Step3. 绘图所需package的安装、调用

library(ggplot2)
library(reshape2)
# 注释:package使用之前需要调用

Step4. 绘图

data_melt <- melt(data,id.vars = "Gene")
# 注释:将原始的宽数据变成长数据,方便画图
p <- ggplot(data_melt,aes(x = value, y = Gene)) +
       geom_line(aes(group = Gene)) +
       geom_point(aes(fill = variable), size = 3)
p

注意改变点颜色的语句fill = variable没有发挥作用,为什么呢?

还是跟geom_point()中的shape有关系,默认是16号实心原点,只有color参数

p <- ggplot(data_melt,aes(x= value, y= Gene)) +
  geom_line(aes(group = Gene)) +
  geom_point(aes(color = variable), size = 3)
p

改变size的大小

p <- ggplot(data_melt,aes(x= value, y= Gene)) +
  geom_line(aes(group = Gene)) +
  geom_point(aes(color = variable, size = value))
p

调整顺序

order <- c("Gene1","Gene2","Gene3","Gene4","Gene5","Gene6","Gene7","Gene8","Gene9","Gene10")
p <- ggplot(data_melt,aes(x= value, y= Gene)) +
  geom_line(aes(group = Gene)) +
  geom_point(aes(fill=variable), shape = 21, size = 3) +
  scale_y_discrete(limits = order)
p

Gene1放在y轴最上面

order <- rev(order)
p <- ggplot(data_melt,aes(x= value, y= Gene)) +
  geom_line(aes(group = Gene)) +
  geom_point(aes(fill=variable), shape = 21, size = 3) +
  scale_y_discrete(limits = order)
p

以上就是R语言绘制Dumbbell plot哑铃图的详细内容,更多关于R语言绘制哑铃图的资料请关注我们其它相关文章!

(0)

相关推荐

  • R语言绘图数据可视化pie chart饼图

    目录 Step 1. 绘图数据的准备 Step2. 绘图数据的读取 Step3.绘图所需package的调用 Step4. 饼图百分比标签准备 Step5.绘图 今天要给大家介绍的Pie chart(饼图),本来是不打算写这个的,因为用Excel画饼图实在是太方便了.本着能少动一下是一下的懒人原则,是不打算用R画的,再说,本小仙不是掌握了R作图大器ggplot2么,实在需要用的时候我就一句ggplot()+geom_pie()不就搞定了. 结果后来用Excel画饼图调整颜色.大小的时候着实有些崩

  • R语言绘图技巧导出高清图方法

    上一次小仙同学分享了 facet violin plot的画法,最后还卖了个关子,给大家留了个悬念.科研文章的插图通常要求比较高,不仅要精准地展示出数据,选对图表类型,还需要简洁优美(?翻译成人话就是,同样的数据能不能多“卖”几分,就看图够不够高大上啦).小仙同学在画图的时候遇到的一个问题就是,RStudio直接导出的图,怎么这么不清晰?为什么教程里别人的图都那么清晰呢?这时候可能就有同学就会说,这还不简单,直接导出矢量图不就可以了吗? 我们来看下,RStudio可以导出的图片格式有这么几种,小

  • R语言导入导出数据的几种方法汇总

    导出: 对于某一数据集导出文件的方法 导出例子:write.csv(data_1,file = "d:/1111111111.csv") 其中data_1是你的数据集,file是你的存储路径和要存储的名字 导入: 1  使用键盘输入数据 (1) 创建一个空数据框(或矩阵),其中变量名和变量的模式需与理想中的最终数据集一致: (2)针对这个数据对象调用文本编辑器,输入你的数据,并将结果保存回此数据对象中. 在下例中,你将创建一个名为mydata的数据框,它含有三个变量:age(数值型).

  • R语言开发之输出折线图的操作

    线形图是通过在多个点之间绘制线段来连接一系列点所形成的图形,这些点按其坐标(通常是x坐标)的值排序,并且它通常用于识别数据趋势. 在R中的通过使用plot()函数来创建线形图,语法如下: plot(v,type,col,xlab,ylab) 参数描述如下: v - 是包含数值的向量. type - 取值"p"表示仅绘制点,"l"表示仅绘制线条,"o"表示仅绘制点和线. xlab - 是x轴的标签. ylab - 是y轴的标签. main - 是图

  • R语言数据可视化绘图Slope chart坡度图画法

    目录 Step1. 绘图数据的准备 Step2. 绘图数据的读取 Step3. 绘图所需package的安装.调用 Step4. 绘图 今天小仙给大家分享一下Slope chart(坡度图)的画法,我在paper中看到的图是这样的 这个图的意思大概是Nasal Tissue比Brochial Tissue的ACE2表达量高(ACE2就是新冠病毒的受体啦) .为了复刻这张图,小仙捏造了一组差不多的数据,竟然感觉比原图好看! 废话不多说,进入正题. Step1. 绘图数据的准备 首先要把你想要绘图的

  • R语言绘制数据可视化Dumbbell plot哑铃图

    目录 Step1. 绘图数据的准备 Step3. 绘图所需package的安装.调用 Step4. 绘图 改变size的大小 调整顺序 又是一年春来到,小仙祝大家在新的一年开开心心.顺顺利利!今天给大家分享的图是哑铃图(Dumbbell plot). Step1. 绘图数据的准备 首先要把你想要绘图的数据调整成R语言可以识别的格式,建议大家在excel中保存成csv格式.作图数据格式如下: Step2. 绘图数据的读取 data <- read.csv("your file path&qu

  • R语言绘图数据可视化Ridgeline plot山脊图画法

    目录 Step1. 绘图数据的准备 Step2. 绘图数据的读取 Step3. 绘图所需package的安装.调用 Step4. 绘图 调整透明度 更改顺序 更改线条形状 今天给大家介绍一下Ridgeline plot(山脊图)的画法. 作图数据如下: Step1. 绘图数据的准备 首先要把你想要绘图的数据调整成R语言可以识别的格式,建议大家在excel中保存成csv格式. Step2. 绘图数据的读取 data<-read.csv("your file path", heade

  • R语言绘制数据可视化小提琴图Violin plot with dot画法

    目录 Step1.绘图数据的准备 Step2.绘图数据的读取 Step3.绘图所需package的安装.调用 Step4.绘图 小提琴图之前已经画过了,不过最近小仙又看到一种貌美的画法,决定复刻一下.文献中看到的图如下: Step1. 绘图数据的准备 首先要把你想要绘图的数据调整成R语言可以识别的格式,建议大家在excel中保存成csv格式.作图数据如下: Step2. 绘图数据的读取 data<-read.csv("your file path", header = T) #注

  • R语言绘制数据可视化小提琴图画法示例

    目录 Step1. 绘图数据的准备 Step2. 绘图数据的读取 Step3. 绘图所需package的安装.调用 Step4. 绘图 小提琴图之前已经画过了,不过最近小仙又看到一种貌美的画法,决定复刻一下.文献中看到的图如下: Step1. 绘图数据的准备 首先要把你想要绘图的数据调整成R语言可以识别的格式,建议大家在excel中保存成csv格式.作图数据如下: Step2. 绘图数据的读取 data<-read.csv("your file path", header = T

  • R语言绘图数据可视化pie chart饼图

    目录 Step 1. 绘图数据的准备 Step2. 绘图数据的读取 Step3.绘图所需package的调用 Step4. 饼图百分比标签准备 Step5.绘图 今天要给大家介绍的Pie chart(饼图),本来是不打算写这个的,因为用Excel画饼图实在是太方便了.本着能少动一下是一下的懒人原则,是不打算用R画的,再说,本小仙不是掌握了R作图大器ggplot2么,实在需要用的时候我就一句ggplot()+geom_pie()不就搞定了. 结果后来用Excel画饼图调整颜色.大小的时候着实有些崩

  • 使用R语言绘制3D数据可视化scatter散点图实现步骤

    目录 Step1. 绘图数据的准备 Step2. 绘图数据的读取 Step3.绘图所需package的调用 Step4.绘图 调整3D点的大小 调整透明度 注意事项 它来了它来了,它顺着网线走来了…哈哈,今天小仙给大家带来的是3D散点图. 强调一下啊,咱们这个教程里第一次出现了3D图,第一次出现了交互式图形(简单粗暴的理解, 用鼠标点击会动的图) 今天主要给大家介绍一下plotly这个R包,顺便分享下3D散点图的画法.plotly是一个在线的数据分析和可视化工具,图表类型丰富.可交互等等一堆优点

  • R语言绘制Facet violin plot小提琴刻面图实现示例

    目录 Step1.绘图数据的准备 Step2.绘图数据的读取 Step3.绘图所需package的安装.调用 Step4.绘图 Step5.美化 老铁们,许久未见啦.顺便说一下,最近可不是小仙同学偷懒哟,电脑上个月送修今天刚刚拿回来(想买联想Yoga的同学先问问自己会不会拆电脑换排线,我买的这台用了一个月,送修也用了一个月 ).最近我可攒了个大招呢,先来看看下面这张图,有没有很眼熟呢? 这张图在开始介绍R语言的时候就出现过啦,不过小仙同学当时并不知道怎么画.今天可以秀一把啦. Step1. 绘图

  • R语言绘制line plot线图示例详解

    目录 Step1.绘图数据的准备 Step2.绘图数据的读取 Step3.绘图所需package的安装.调用 Step4.绘图 最近小仙同学在Nature Cell Biology上看到了这样一张图,很常见的折线图画成这个样子——原来很常见的图标类型也可以“焕发新春”! 今天小仙同学就尝试用R复刻一张类似的折线图. Step1. 绘图数据的准备 首先要把你想要绘图的数据调整成R语言可以识别的格式,建议大家在excel中保存成csv格式.数据的格式如下图:一列表示一种变量,最后一列是每一行的行名.

  • 如何用R语言绘制散点图

    散点图是将所有的数据以点的形式展现在直角坐标系上,以显示变量之间的相互影响程度,点的位置由变量的数值决定,每个点对应一个 X 和 Y 轴点坐标. 散点图可以使用 plot() 函数来绘制,语法格式如下: plot(x, y, type="p", main, xlab, ylab, xlim, ylim, axes) x 横坐标 x 轴的数据集合 y 纵坐标 y 轴的数据集合 type:绘图的类型,p 为点.l 为直线, o 同时绘制点和线,且线穿过点. main 图表标题. xlab.

随机推荐