Python机器学习之预测黄金价格

目录
  • 读取黄金 ETF 数据
  • 定义解释变量
  • 定义因变量
  • 将数据拆分为训练和测试数据集
  • 创建线性回归模型
  • 预测黄金ETF价格
  • 绘制累积收益
  • 预测每日价格

读取黄金 ETF 数据

本文使用机器学习方法来预测最重要的贵金属之一黄金的价格。我们将创建一个线性回归模型,该模型从过去的黄金 ETF (GLD) 价格中获取信息,并返回对第二天黄金 ETF 价格的预测。GLD是直接投资实物黄金的最大ETF。(扫描本文最下方二维码获取全部完整源码和Jupyter Notebook 文件打包下载。)

首先要做的是:导入所有必要库。

# LinearRegression 是一个用于线性回归的机器学习库
from sklearn.linear_model import LinearRegression
# pandas 和 numpy 用于数据操作
import pandas as pd
import numpy as np
# matplotlib 和 seaborn 用于绘制图形
import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use('seaborn-darkgrid')
# yahoo Finance用于获取数据
import yfinance as yf

然后,我们读取过去 12 年的每日黄金 ETF 价格数据并将其存储在 Df 中。我们删除不相关的列并使用 dropna() 函数删除 NaN 值。然后,我们绘制黄金 ETF 收盘价。

Df = yf.download('GLD', '2008-01-01', '2020-6-22', auto_adjust=True)
DfDf = Df[['Close']]
DfDf = Df.dropna()
Df.Close.plot(figsize=(10, 7),color='r')
plt.ylabel("Gold ETF Prices")
plt.title("Gold ETF Price Series")
plt.show() 

定义解释变量

解释变量是一个被操纵以确定第二天黄金 ETF 价格的变量。简单地说,它们是我们想要用来预测黄金 ETF 价格的特征。

该策略中的解释变量是过去 3 天和 9 天的移动平均线。我们使用 dropna() 函数删除 NaN 值并将特征变量存储在 X 中。

但是,您可以向 X 添加更多您认为对预测黄金 ETF 价格有用的变量。这些变量可以是技术指标、其他 ETF 的价格,例如黄金矿工 ETF (GDX) 或石油 ETF (USO),或美国经济数据。

定义因变量

同样,因变量取决于解释变量的值。简而言之,这是我们试图预测的黄金 ETF 价格。我们将黄金 ETF 价格存储在 y 中。

Df['S_3'] = Df['Close'].rolling(window=3).mean()
Df['S_9'] = Df['Close'].rolling(window=9).mean()
Df['next_day_price'] = Df['Close'].shift(-1)
DfDf = Df.dropna()
X = Df[['S_3', 'S_9']]
y = Df['next_day_price']

将数据拆分为训练和测试数据集

在这一步中,我们将预测变量和输出数据拆分为训练数据和测试数据。通过将输入与预期输出配对,训练数据用于创建线性回归模型。

测试数据用于估计模型的训练效果。

•前 80% 的数据用于训练,剩余的数据用于测试

•X_train & y_train 是训练数据集

•X_test & y_test 是测试数据集

t = .8
t = int(t*len(Df))
XX_train = X[:t]
yy_train = y[:t]
XX_test = X[t:]
yy_test = y[t:]

创建线性回归模型

我们现在将创建一个线性回归模型。但是,什么是线性回归?

如果我们试图捕捉“x”和“y”变量之间的数学关系,通过对散点图拟合一条线,“最好”根据“x”的观察值解释“y”的观察值,那么这样的方程 x 和 y 之间的关系称为线性回归分析。

为了进一步分解,回归用自变量解释了因变量的变化。因变量“y”是您要预测的变量。自变量“x”是您用来预测因变量的解释变量。以下回归方程描述了这种关系:

Y = m1 * X1 + m2 * X2 + C
Gold ETF price = m1 * 3 days moving average + m2 * 15 days moving average + c

然后我们使用拟合方法拟合自变量和因变量(x 和 y)以生成回归系数和常数。

linear = LinearRegression().fit(X_train, y_train)
print("Linear Regression model")
print("Gold ETF Price (y) = %.2f * 3 Days Moving Average (x1) \
+ %.2f * 9 Days Moving Average (x2) \
+ %.2f (constant)" % (linear.coef_[0], linear.coef_[1], linear.intercept_))

输出线性回归模型:

黄金 ETF 价格 (y) = 1.20 * 3 天移动平均线 (x1) + -0.21 * 9 天移动平均线 (x2) + 0.43(常数)

预测黄金ETF价格

现在,是时候检查模型是否在测试数据集中工作了。我们使用使用训练数据集创建的线性模型来预测黄金 ETF 价格。预测方法找到给定解释变量 X 的黄金 ETF 价格 (y)。

predicted_price = linear.predict(X_test)
predicted_price = pd.DataFrame(
    predicted_price, index=y_test.index, columns=['price'])
predicted_price.plot(figsize=(10, 7))
y_test.plot()
plt.legend(['predicted_price', 'actual_price'])
plt.ylabel("Gold ETF Price")
plt.show() 

该图显示了黄金 ETF 的预测价格和实际价格。

现在,让我们使用 score() 函数计算拟合优度。

r2_score = linear.score(X[t:], y[t:])*100
float("{0:.2f}".format(r2_score))

输出:

99.21

可以看出,模型的 R 平方为 99.21%。R 平方始终介于 0 和 100% 之间。接近 100% 的分数表明该模型很好地解释了黄金 ETF 的价格。

绘制累积收益

让我们计算一下这个策略的累积收益来分析它的表现。

累计收益计算步骤如下:

•  生成黄金价格的每日百分比变化

•  当第二天的预测价格高于当天的预测价格时,创建一个以“1”表示的买入交易信号

•  通过将每日百分比变化乘以交易信号来计算策略回报。

•  最后,我们将绘制累积收益图

gold = pd.DataFrame()
gold['price'] = Df[t:]['Close']
gold['predicted_price_next_day'] = predicted_price
gold['actual_price_next_day'] = y_test
gold['gold_returns'] = gold['price'].pct_change().shift(-1)
gold['signal'] = np.where(gold.predicted_price_next_day.shift(1) < gold.predicted_price_next_day,1,0)
gold['strategy_returns'] = gold.signal * gold['gold_returns']
((gold['strategy_returns']+1).cumprod()).plot(figsize=(10,7),color='g')
plt.ylabel('Cumulative Returns')
plt.show()

输出如下:

我们还将计算夏普比:

sharpe = gold['strategy_returns'].mean()/gold['strategy_returns'].std()*(252**0.5)
'Sharpe Ratio %.2f' % (sharpe)

输出如下:

'Sharpe Ratio 1.06'

预测每日价格

您可以使用以下代码来预测黄金价格,并给出我们应该购买 GLD 还是不持仓的交易信号:

import datetime as dt
current_date = dt.datetime.now()
data = yf.download('GLD', '2008-06-01', current_date, auto_adjust=True)
data['S_3'] = data['Close'].rolling(window=3).mean()
data['S_9'] = data['Close'].rolling(window=9).mean()
datadata = data.dropna()
data['predicted_gold_price'] = linear.predict(data[['S_3', 'S_9']])
data['signal'] = np.where(data.predicted_gold_price.shift(1) < data.predicted_gold_price,"Buy","No Position")
data.tail(1)[['signal','predicted_gold_price']].T

输出如下:

以上就是Python机器学习之预测黄金价格的详细内容,更多关于Python机器学习的资料请关注我们其它相关文章!

(0)

相关推荐

  • 使用python爬虫获取黄金价格的核心代码

    继续练手,根据之前获取汽油价格的方式获取了金价,暂时没钱投资,看看而已 #!/usr/bin/env python # -*- coding: utf-8 -*- """ 获取每天黄金价格 @author: yufei @site: http://www.antuan.com 2017-05-11 """ import re import urllib2,urllib import random import threading import t

  • python用线性回归预测股票价格的实现代码

    线性回归在整个财务中广泛应用于众多应用程序中.在之前的教程中,我们使用普通最小二乘法(OLS)计算了公司的beta与相对索引的比较.现在,我们将使用线性回归来估计股票价格. 线性回归是一种用于模拟因变量(y)和自变量(x)之间关系的方法.通过简单的线性回归,只有一个自变量x.可能有许多独立变量属于多元线性回归的范畴.在这种情况下,我们只有一个自变量即日期.对于第一个日期上升到日期向量长度的整数,该日期将由1开始的整数表示,该日期可以根据时间序列数据而变化.当然,我们的因变量将是股票的价格.为了理

  • python基于机器学习预测股票交易信号

    引言 近年来,随着技术的发展,机器学习和深度学习在金融资产量化研究上的应用越来越广泛和深入.目前,大量数据科学家在Kaggle网站上发布了使用机器学习/深度学习模型对股票.期货.比特币等金融资产做预测和分析的文章.从金融投资的角度看,这些文章可能缺乏一定的理论基础支撑(或交易思维),大都是基于数据挖掘.但从量化的角度看,有很多值得我们学习参考的地方,尤其是Pyhton的深入应用.数据可视化和机器学习模型的评估与优化等.下面借鉴Kaggle上的一篇文章<Building an Asset Trad

  • Python机器学习之预测黄金价格

    目录 读取黄金 ETF 数据 定义解释变量 定义因变量 将数据拆分为训练和测试数据集 创建线性回归模型 预测黄金ETF价格 绘制累积收益 预测每日价格 读取黄金 ETF 数据 本文使用机器学习方法来预测最重要的贵金属之一黄金的价格.我们将创建一个线性回归模型,该模型从过去的黄金 ETF (GLD) 价格中获取信息,并返回对第二天黄金 ETF 价格的预测.GLD是直接投资实物黄金的最大ETF.(扫描本文最下方二维码获取全部完整源码和Jupyter Notebook 文件打包下载.) 首先要做的是:

  • Python机器学习之手写KNN算法预测城市空气质量

    目录 一.KNN算法简介 二.KNN算法实现思路 三.KNN算法预测城市空气质量 1. 获取数据 2. 生成测试集和训练集 3. 实现KNN算法 一.KNN算法简介 KNN(K-Nearest Neighbor)最邻近分类算法是数据挖掘分类(classification)技术中常用算法之一,其指导思想是"近朱者赤,近墨者黑",即由你的邻居来推断出你的类别. KNN最邻近分类算法的实现原理:为了判断未知样本的类别,以所有已知类别的样本作为参照,计算未知样本与所有已知样本的距离,从中选取与

  • Python机器学习应用之基于决策树算法的分类预测篇

    目录 一.决策树的特点 1.优点 2.缺点 二.决策树的适用场景 三.demo 一.决策树的特点 1.优点 具有很好的解释性,模型可以生成可以理解的规则. 可以发现特征的重要程度. 模型的计算复杂度较低. 2.缺点 模型容易过拟合,需要采用减枝技术处理. 不能很好利用连续型特征. 预测能力有限,无法达到其他强监督模型效果. 方差较高,数据分布的轻微改变很容易造成树结构完全不同. 二.决策树的适用场景 决策树模型多用于处理自变量与因变量是非线性的关系. 梯度提升树(GBDT),XGBoost以及L

  • Python机器学习应用之支持向量机的分类预测篇

    目录 1.Question? 2.Answer!——SVM 3.软间隔 4.超平面 支持向量机常用于数据分类,也可以用于数据的回归预测 1.Question? 我们经常会遇到这样的问题,给你一些属于两个类别的数据(如子图1),需要一个线性分类器将这些数据分开,有很多分法(如子图2),现在有一个问题,两个分类器,哪一个更好?为了判断好坏,我们需要引入一个准则:好的分类器不仅仅能够很好的分开已有的数据集,还能对为知的数据进行两个划分,假设现在有一个属于红色数据点的新数据(如子图3中的绿三角),可以看

  • Python机器学习应用之基于BP神经网络的预测篇详解

    目录 一.Introduction 1 BP神经网络的优点 2 BP神经网络的缺点 二.实现过程 1 Demo 2 基于BP神经网络的乳腺癌分类预测 三.Keys 一.Introduction 1 BP神经网络的优点 非线性映射能力:BP神经网络实质上实现了一个从输入到输出的映射功能,数学理论证明三层的神经网络就能够以任意精度逼近任何非线性连续函数.这使得其特别适合于求解内部机制复杂的问题,即BP神经网络具有较强的非线性映射能力. 自学习和自适应能力:BP神经网络在训练时,能够通过学习自动提取输

  • Python机器学习应用之基于LightGBM的分类预测篇解读

    目录 一.Introduction 1 LightGBM的优点 2 LightGBM的缺点 二.实现过程 1 数据集介绍 2 Coding 三.Keys LightGBM的重要参数 基本参数调整 针对训练速度的参数调整 针对准确率的参数调整 针对过拟合的参数调整 一.Introduction LightGBM是扩展机器学习系统.是一款基于GBDT(梯度提升决策树)算法的分布梯度提升框架.其设计思路主要集中在减少数据对内存与计算性能的使用上,以及减少多机器并行计算时的通讯代价 1 LightGBM

  • python机器学习案例教程——K最近邻算法的实现

    K最近邻属于一种分类算法,他的解释最容易,近朱者赤,近墨者黑,我们想看一个人是什么样的,看他的朋友是什么样的就可以了.当然其他还牵着到,看哪方面和朋友比较接近(对象特征),怎样才算是跟朋友亲近,一起吃饭还是一起逛街算是亲近(距离函数),根据朋友的优秀不优秀如何评判目标任务优秀不优秀(分类算法),是否不同优秀程度的朋友和不同的接近程度要考虑一下(距离权重),看几个朋友合适(k值),能否以分数的形式表示优秀度(概率分布). K最近邻概念: 它的工作原理是:存在一个样本数据集合,也称作为训练样本集,并

  • Python机器学习入门(四)选择模型

    目录 1.数据分离与验证 1.1分离训练数据集和评估数据集 1.2K折交叉验证分离 1.3弃一交叉验证分离 1.4重复随机分离评估数据集与训练数据集 2.算法评估 2.1分类算法评估 2.1.1分类准确度 2.1.2分类报告 2.2回归算法评估 2.2.1平均绝对误差 2.2.2均方误差 2.2.3判定系数() 总结 1.数据分离与验证 要知道算法模型对未知的数据表现如何,最好的评估办法是利用已经明确知道结果的数据运行生成的算法模型进行验证.此外还可以使用新的数据来评估算法模型. 在评估机器学习

  • python机器学习基础特征工程算法详解

    目录 一.机器学习概述 二.数据集的构成 1.数据集存储 2.可用的数据集 3.常用数据集的结构 三.特征工程 1.字典数据特征抽取 2.文本特征抽取 3.文本特征抽取:tf-idf 4.特征预处理:归一化 5.特征预处理:标准化 6.特征预处理:缺失值处理 一.机器学习概述 机器学习是从数据中,自动分析获得规律(模型),并利用规律对未知数据进行预测. 二.数据集的构成 1.数据集存储 机器学习的历史数据通常使用csv文件存储. 不用mysql的原因: 1.文件大的话读取速度慢: 2.格式不符合

随机推荐