pytorch forward两个参数实例
以channel Attention Block为例子
class CAB(nn.Module): def __init__(self, in_channels, out_channels): super(CAB, self).__init__() self.global_pooling = nn.AdaptiveAvgPool2d(output_size=1) self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) self.relu = nn.ReLU() self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=1, stride=1, padding=0) self.sigmod = nn.Sigmoid() def forward(self, x): x1, x2 = x # high, low x = torch.cat([x1,x2],dim=1) x = self.global_pooling(x) x = self.conv1(x) x = self.relu(x) x = self.conv2(x) x = self.sigmod(x) x2 = x * x2 res = x2 + x1 return res
以上这篇pytorch forward两个参数实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
Pytorch中实现只导入部分模型参数的方式
我们在做迁移学习,或者在分割,检测等任务想使用预训练好的模型,同时又有自己修改之后的结构,使得模型文件保存的参数,有一部分是不需要的(don't expected).我们搭建的网络对保存文件来说,有一部分参数也是没有的(missed).如果依旧使用torch.load(model.state_dict())的办法,就会出现 xxx expected,xxx missed类似的错误.那么在这种情况下,该如何导入模型呢? 好在Pytorch中的模型参数使用字典保存的,键是参数的名称,值是参数的具体数
-
pytorch 自定义参数不更新方式
nn.Module中定义参数:不需要加cuda,可以求导,反向传播 class BiFPN(nn.Module): def __init__(self, fpn_sizes): self.w1 = nn.Parameter(torch.rand(1)) print("no---------------------------------------------------",self.w1.data, self.w1.grad) 下面这个例子说明中间变量可能没有梯度,但是最终变量有梯度
-
pytorch如何冻结某层参数的实现
在迁移学习finetune时我们通常需要冻结前几层的参数不参与训练,在Pytorch中的实现如下: class Model(nn.Module): def __init__(self): super(Transfer_model, self).__init__() self.linear1 = nn.Linear(20, 50) self.linear2 = nn.Linear(50, 20) self.linear3 = nn.Linear(20, 2) def forward(self, x
-
pytorch forward两个参数实例
以channel Attention Block为例子 class CAB(nn.Module): def __init__(self, in_channels, out_channels): super(CAB, self).__init__() self.global_pooling = nn.AdaptiveAvgPool2d(output_size=1) self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, st
-
pytorch 求网络模型参数实例
用pytorch训练一个神经网络时,我们通常会很关心模型的参数总量.下面分别介绍来两种方法求模型参数 一 .求得每一层的模型参数,然后自然的可以计算出总的参数. 1.先初始化一个网络模型model 比如我这里是 model=cliqueNet(里面是些初始化的参数) 2.调用model的Parameters类获取参数列表 一个典型的操作就是将参数列表传入优化器里.如下 optimizer = optim.Adam(model.parameters(), lr=opt.lr) 言归正传,继续回到参
-
Pytorch加载部分预训练模型的参数实例
前言 自从从深度学习框架caffe转到Pytorch之后,感觉Pytorch的优点妙不可言,各种设计简洁,方便研究网络结构修改,容易上手,比TensorFlow的臃肿好多了.对于深度学习的初学者,Pytorch值得推荐.今天主要主要谈谈Pytorch是如何加载预训练模型的参数以及代码的实现过程. 直接加载预选脸模型 如果我们使用的模型和预训练模型完全一样,那么我们就可以直接加载别人的模型,还有一种情况,我们在训练自己模型的过程中,突然中断了,但只要我们保存了之前的模型的参数也可以使用下面的代码直
-
使用PyTorch训练一个图像分类器实例
如下所示: import torch import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt import numpy as np print("torch: %s" % torch.__version__) print("tortorchvisionch: %s" % torchvision.__version__) print(&
-
pytorch实现ResNet结构的实例代码
1.ResNet的创新 现在重新稍微系统的介绍一下ResNet网络结构. ResNet结构首先通过一个卷积层然后有一个池化层,然后通过一系列的残差结构,最后再通过一个平均池化下采样操作,以及一个全连接层的得到了一个输出.ResNet网络可以达到很深的层数的原因就是不断的堆叠残差结构而来的. 1)亮点 网络中的亮点 : 超深的网络结构( 突破1000 层) 提出residual 模块 使用Batch Normalization 加速训练( 丢弃dropout) 但是,一般来说,并不是一直的加深神经
-
PyTorch中torch.nn.Linear实例详解
目录 前言 1. nn.Linear的原理: 2. nn.Linear的使用: 3. nn.Linear的源码定义: 补充:许多细节需要声明 总结 前言 在学习transformer时,遇到过非常频繁的nn.Linear()函数,这里对nn.Linear进行一个详解.参考:https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html 1. nn.Linear的原理: 从名称就可以看出来,nn.Linear表示的是线性变
-
pytorch 输出中间层特征的实例
pytorch 输出中间层特征: tensorflow输出中间特征,2种方式: 1. 保存全部模型(包括结构)时,需要之前先add_to_collection 或者 用slim模块下的end_points 2. 只保存模型参数时,可以读取网络结构,然后按照对应的中间层输出即可. but:Pytorch 论坛给出的答案并不好用,无论是hooks,还是重建网络并去掉某些层,这些方法都不好用(在我看来). 我们可以在创建网络class时,在forward时加入一个dict 或者 list,dict是将
-
pytorch 修改预训练model实例
我就废话不多说了,直接上代码吧! class Net(nn.Module): def __init__(self , model): super(Net, self).__init__() #取掉model的后两层 self.resnet_layer = nn.Sequential(*list(model.children())[:-2]) self.transion_layer = nn.ConvTranspose2d(2048, 2048, kernel_size=14, stride=3)
-
pytorch固定BN层参数的操作
背景: 基于PyTorch的模型,想固定主分支参数,只训练子分支,结果发现在不同epoch相同的测试数据经过主分支输出的结果不同. 原因: 未固定主分支BN层中的running_mean和running_var. 解决方法: 将需要固定的BN层状态设置为eval. 问题示例: 环境:torch:1.7.0 # -*- coding:utf-8 -*- import torch import torch.nn as nn import torch.nn.functional as F class
-
Pytorch可视化之Visdom使用实例
目录 一.Visdom简介 二.安装和运行 三.可视化例子 1.输出Hello World! 2.显示图像 3.绘制散点图 4.绘制线条 4.1 绘制一条直线 4.2 绘制两条直线 4.3 绘制正弦曲线 总结 一.Visdom简介 Visdom是由Facebook公司开发的一个进行数据可视化的Web应用程序,支持Torch.Numpy.Pytorch这3个库的创建.管理和分享实时的数据可视化结果. 二.安装和运行 可直接使用pip进行安装,命令如下: pip install visdom 安装过
随机推荐
- python编程羊车门问题代码示例
- Python使用sftp实现上传和下载功能(实例代码)
- JS中type="button"和type="submit"的区别
- SQL Server复制需要有实际的服务器名称才能连接到服务器
- Vue学习笔记进阶篇之vue-router安装及使用方法
- nodejs如何获取时间戳与时间差
- SSH框架的常见问题和解决方法
- IOS图片设置毛玻璃效果
- java文件和目录的增删复制
- JavaScript中停止执行setInterval和setTimeout事件的方法
- ASP.NET批量下载文件的方法
- 提升PHP执行速度全攻略(上)
- MySQL抛出Incorrect string value异常分析
- mysql字符集和数据库引擎修改方法分享
- JS选项卡动态替换banner图片路径的方法
- 语音读单词或句子的批处理
- Sqlserver timestamp数据类使用介绍
- jquery实现全选、不选、反选的两种方法
- Javascript异步编程的4种方法让你写出更出色的程序
- 简单介绍JavaScript中字符串创建的基本方法