Python人工智能深度学习RNN模型结构流程

目录
  • 1.RNN基础模型
  • 2.LSTM
  • 3.流程结构

1.RNN基础模型

RNN主要特点是,在DNN隐藏层的输出内容会被存储,并且可以作为输入给到下一个神经元。

如下图所示,当“台北”这个词被输入的时候,前面的词有可能是“离开“,有可能是”到达“,如果把上一次输入的”离开“,所得的隐藏层内容,输入给下一层,这样就有可能区分开是”离开台北“,还是”到达台北“。

如果隐藏层存储的内容并给下次使用,叫做Elman Network

如果最终的输出内容给下次使用,叫做Jordan Network

双向RNN:从正向输入的内容,得到的存储内容,以及反向输入内容得到的存储内容,同时输入给模型。

2.LSTM

Long Short-term Memory,其实当人们说到使用RNN的时候,通常都是使用的LSTM。对于LSTM的每一个单元,除了输入的数据之外,还有另外三个“门”来控制输入,输出,存储。如下图所示,如此一来,每一个LSTM单元共有4个输入,以及1个输出。

这些控制的门都是向量,并且输入之后都需要进行一个sigmoid函数转换,因此输入和门进行计算之后,得到的输出是位于0-1之间的数据,这样就可以实现对输入、输出、存储与否的把控。而门的参数都需要由RNN学习得到。

3.流程结构

如下图,假如输入的是z,经过函数转换,得到g(z),输入门的数据z(i),经过一个sigmoid函数转换,将其相乘,得到g(z) * f(z(i))

同样的,当控制存储数的门得到的结果是1的时候,那么以前的数据就会和1相乘,并于前面算的结果相加,这样就实现了对上次存储数据的利用。是0的时候就会删除上次的数据,实现存储数据的格式化。

最终得到的输出是h(c),但如果输出门输入z0后计算的结果是0,则该输出就无法输出,是1的时候才可以输出。

LSTM和DNN的区别,就是把神经元换成了LSTM单元,输入的数据乘上权重之后,来控制各个门。因此参数变成平常DNN参数的4倍。

将整个流程简化来表示,如下。

实际中,LSTM不只是一个,它是多个组合,并且每一个的输出,以及存储的内容也会添加到下一次的输入当中。如下图所示:

以上便是LSTM的整体结构。

Python人工智能深度学习RNN模型流程结构的详细内容今天就为大家讲解到这里了,更多关于RNN模型流程结构的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python人工智能深度学习CNN

    目录 1.CNN概述 2.卷积层 3.池化层 4.全连层 1.CNN概述 CNN的整体思想,就是对图片进行下采样,让一个函数只学一个图的一部分,这样便得到少但是更有效的特征,最后通过全连接神经网络对结果进行输出. 整体架构如下: 输入图片 →卷积:得到特征图(激活图) →ReLU:去除负值 →池化:缩小数据量同时保留最有效特征 (以上步骤可多次进行) →输入全连接神经网络 2.卷积层 CNN-Convolution 卷积核(或者被称为kernel, filter, neuron)是要被学出来的,

  • Python人工智能深度学习模型训练经验总结

    目录 一.假如训练集表现不好 1.尝试新的激活函数 2.自适应学习率 ①Adagrad ②RMSProp ③ Momentum ④Adam 二.在测试集上效果不好 1.提前停止 2.正则化 3.Dropout 一.假如训练集表现不好 1.尝试新的激活函数 ReLU:Rectified Linear Unit 图像如下图所示:当z<0时,a = 0, 当z>0时,a = z,也就是说这个激活函数是对输入进行线性转换.使用这个激活函数,由于有0的存在,计算之后会删除掉一些神经元,使得神经网络变窄.

  • 解读! Python在人工智能中的作用

    人工智能是一种未来性的技术,目前正在致力于研究自己的一套工具.一系列的进展在过去的几年中发生了:无事故驾驶超过300000英里并在三个州合法行驶迎来了自动驾驶的一个里程碑:IBM Waston击败了Jeopardy两届冠军;统计学习技术从对消费者兴趣到以万亿记的图像的复杂数据集进行模式识别. 这些发展必然提高了科学家和巨匠们对人工智能的兴趣,这也使得开发者们了解创建人工智能应用的真实本质.开发这些需要注意的第一件事是: 哪一种编程语言适合人工智能? 你所熟练掌握的每一种编程语言都可以是人工智能的

  • python深度学习人工智能BackPropagation链式法则

    目录 1.链式法则 2.前向传播 3.后向传播 4.计算方式整理 5.总结 1.链式法则 根据以前的知识,如果我们需要寻找到目标参数的值的话,我们需要先给定一个初值,然后通过梯度下降,不断对其更新,直到最终的损失值最小即可.而其中最关键的一环,就是梯度下降的时候,需要的梯度,也就是需要求最终的损失函数对参数的导数. 如下图,假设有一个神经元,是输入层,有2个数据,参数分别是w1和w2,偏置项为b,那么我们需要把这些参数组合成一个函数z,然后将其输入到sigmoid函数中,便可得到该神经元的输出结

  • 人工智能学习Pytorch张量数据类型示例详解

    目录 1.python 和 pytorch的数据类型区别 2.张量 ①一维张量 ②二维张量 ③3维张量 ④4维张量 1.python 和 pytorch的数据类型区别 在PyTorch中无法展示字符串,因此表达字符串,需要将其转换成编码的类型,比如one_hot,word2vec等. 2.张量 在python中,会有标量,向量,矩阵等的区分.但在PyTorch中,这些统称为张量tensor,只是维度不同而已. 标量就是0维张量,只有一个数字,没有维度. 向量就是1维张量,是有顺序的数字,但没有"

  • Python人工智能深度学习RNN模型结构流程

    目录 1.RNN基础模型 2.LSTM 3.流程结构 1.RNN基础模型 RNN主要特点是,在DNN隐藏层的输出内容会被存储,并且可以作为输入给到下一个神经元. 如下图所示,当"台北"这个词被输入的时候,前面的词有可能是"离开",有可能是"到达",如果把上一次输入的"离开",所得的隐藏层内容,输入给下一层,这样就有可能区分开是"离开台北",还是"到达台北". 如果隐藏层存储的内容并给下次

  • python人工智能深度学习算法优化

    目录 1.SGD 2.SGDM 3.Adam 4.Adagrad 5.RMSProp 6.NAG 1.SGD 随机梯度下降 随机梯度下降和其他的梯度下降主要区别,在于SGD每次只使用一个数据样本,去计算损失函数,求梯度,更新参数.这种方法的计算速度快,但是下降的速度慢,可能会在最低处两边震荡,停留在局部最优. 2.SGDM SGM with Momentum:动量梯度下降 动量梯度下降,在进行参数更新之前,会对之前的梯度信息,进行指数加权平均,然后使用加权平均之后的梯度,来代替原梯度,进行参数的

  • python人工智能深度学习入门逻辑回归限制

    目录 1.逻辑回归的限制 2.深度学习的引入 3.深度学习的计算方式 4.神经网络的损失函数 1.逻辑回归的限制 逻辑回归分类的时候,是把线性的函数输入进sigmoid函数进行转换,后进行分类,会在图上画出一条分类的直线,但像下图这种情况,无论怎么画,一条直线都不可能将其完全分开. 但假如我们可以对输入的特征进行一个转换,便有可能完美分类.比如: 创造一个新的特征x1:到(0,0)的距离,另一个x2:到(1,1)的距离.这样可以计算出四个点所对应的新特征,画到坐标系上如以下右图所示.这样转换之后

  • Python编程深度学习计算库之numpy

    NumPy是python下的计算库,被非常广泛地应用,尤其是近来的深度学习的推广.在这篇文章中,将会介绍使用numpy进行一些最为基础的计算. NumPy vs SciPy NumPy和SciPy都可以进行运算,主要区别如下 最近比较热门的深度学习,比如在神经网络的算法,多维数组的使用是一个极为重要的场景.如果你熟悉tensorflow中的tensor的概念,你会非常清晰numpy的作用.所以熟悉Numpy可以说是使用python进行深度学习入门的一个基础知识. 安装 liumiaocn:tmp

  • Docker容器搭建运行python的深度学习环境的方法

    任务管理器中查看虚拟化,已启用 若禁用,重启电脑,到Bios中开启 安装Docker Desktop及开启WSL功能. 打开 powershell 创建镜像 docker run --rm -it quay.io/azavea/raster-vision:pytorch-latest /bin/bash docker images 依据镜像id创建容器 docker create -it --name [name] [镜像id] docker start [name] 进入容器 docker e

  • Python人工智能之混合高斯模型运动目标检测详解分析

    [人工智能项目]混合高斯模型运动目标检测 本次工作主要对视频中运动中的人或物的边缘背景进行检测. 那么走起来瓷!!! 原视频 高斯算法提取工作 import cv2 import numpy as np # 高斯算法 class gaussian: def __init__(self): self.mean = np.zeros((1, 3)) self.covariance = 0 self.weight = 0; self.Next = None self.Previous = None c

  • 人工智能深度学习OpenAI baselines的使用方法

    OpenAI,由诸多硅谷大亨联合建立的人工智能非营利组织.2015年马斯克与其他硅谷科技大亨进行连续对话后,决定共同创建OpenAI,希望能够预防人工智能的灾难性影响,推动人工智能发挥积极作用 OpenAI.DeepMind,伯克利三个可以说是强化学习的推动者,其中OpenAI 为很多算法都写了baselines.本文讲开始运行例子,以A2C算法为例子(具体a2c算法原理后续讲解): 首先就是安装gym环境,具体直接参考OpenAI的github: https://github.com/open

  • Python编程深度学习绘图库之matplotlib

    matplotlib是python的一个开源的2D绘图库,它的原作者是John D. Hunter,因为在设计上借鉴了matlab,所以成为matplotlib.和Pillow一样是被广泛使用的绘图功能,而在深度学习相关的部分,matplotlib得宠的多.这篇文章将简单介绍一下如何安装以及使用它来画一些非常常见的统计图形. 概要信息 注意事项:由于Python2支持到2020年,很多python库都开始主要支持python3了,matplotlib的主分支也已经是python3了.而这篇文章中

随机推荐