浅谈C++中派生类对象的内存布局

主要从三个方面来讲:

  1 单一继承

  2 多重继承

  3 虚拟继承

1 单一继承

(1)派生类完全拥有基类的内存布局,并保证其完整性。

派生类可以看作是完整的基类的Object再加上派生类自己的Object。如果基类中没有虚成员函数,那么派生类与具有相同功能的非派生类将不带来任何性能上的差异。另外,一定要保证基类的完整性。实际内存布局由编译器自己决定,VS里,把虚指针放在最前边,接着是基类的Object,最后是派生类自己的object。举个栗子:

class A
{
  int b;
  char c;
};
class A1 :public A
{
    char a;
};
int main()
{
  cout << sizeof(A) << " " << sizeof(A1) << endl;
  return 0;
}

输出是什么?

答案:

8 12

A类的话,一个int,一个char,5B,内存对齐一下,8B。A1的话,一个int,两个char,内存对齐一下,也是8B。不对吗?

我说了,要保证基类对象的完整性。那么一定要保证A1类前面的几个字节一定要与A类完全一样。也就是说,A类作为内存补齐的3个字节也是要出现在A1里面的。也就是说,A类是这样的:int(4B)+char(1B)+padding(3B)=8B,A1类:int(4B)+char(1B)+padding(3B)+char(1B)+padding(3B)=12B。

(2)虚指针怎么处理?

还是视编译器而定,VS是永远把vptr放在对象的最前边。如果基类中含有虚函数,那么处理情况与上边一样。可是,如果基类中没有虚函数而派生类有的话,那么如果把vptr放在派生类的前边的话,将会导致派生类中基类成分并不在最前边。这将带来什么问题呢?举栗:假设A不含虚,而A1含。

A *pA;
A1 obj_A1;
pA=&obj_A1;

如果A1完全包含A并且A位于A1的最前边,那么编译器只需要把&obj_A1直接赋给pA就可以了。如果不是呢?编译器就需要把&obj_A1+sizeof(vptr)赋给pA了。

2 多重继承

说结论:VS的内存布局是按照声明顺序排列内存。再举个栗子:

class point2d
{
public:
  virtual ~point2d(){};
  float x;
  float y;
};
class point3d :public point2d
{
  ~point3d(){};
  float z;
};
class vertex
{
public:
  virtual ~vertex(){};
  vertex* next;
};
class vertex3d :public point3d, public vertex
{
  float bulabula;
};

int _tmain(int argc, _TCHAR* argv[])
{
  cout << sizeof(point2d) << " " << sizeof(point3d) << " " << sizeof(vertex) << " " << sizeof(vertex3d) << endl;
  return 0;
}

输出: 12 16 8 24。

内存布局:

point2d: vptr(4)+x(4)+y(4)=12B

point3d: vptr+x+y+z=16B

vertex: vptr+next=8B

vertex3d: vptr+x+y+z+vptr+next+bulabula=28B

为什么需要多个虚指针?请往下看。

3 虚拟继承

(1)为什么要有“虚继承”这样的机制?

简单讲,虚继承是为也防止“diamond”继承所带来的问题。也就是类A1、A2都继承于A,类B又同时继承于A1、A2。这样一来,类B中就有两份类A的成员了,这样的程序无法通过编译。我们改成这样的形式:

class A
{
public:
  int a;
  virtual ~A();
  virtual void fun(){cout<<"A"<<endl;}
};
class A1 :public virtual A
{
public:
  int a1;
  virtual void fun(){cout<<"A1"<<endl;}
};
class A2 :public virtual A
{
public:
  int a2;
  virtual void fun(){cout<<"A2"<<endl;}
}; 

class B :public A1,public A2 {
public:
  int b;
  virtual void fun(){cout<<"B"<<endl;}
  virtual void funB(){};
};

这样就能防止这样的事情发生。

(2)虚拟继承与普通继承的区别:

普通继承使得派生类每继承一个基类便拥有一份基类的成员。而虚拟继承会把通过虚拟继承的那一部分,放在对象的最后。从而使得只拥有一份基类中的成员。虚拟对象的偏移量被保存在Derived类的vtbl的this指向的上一个slot。比较难理解。下面我给你个栗子。

(3)虚拟继承的内存布局:

每个派生类会把其不变部分放在前面,共享部分放在后面。

上面四个类的大小是怎样的呢?

int _tmain(int argc, _TCHAR* argv[])
{
  cout << sizeof(A) << " " << sizeof(A1) << " " << sizeof(A2) << " " << sizeof(B) << endl;
  return 0;
}

输出:8 16 16 28

内存布局:

    A: vptr+a=8B

    A1: vptr+a1+vptrA+a=16B

    A2: vptr+a2+vptrA+a=16B

    A3: vptr+a1+vptrA2+a2+b+vptrA+a=28B

上个草图:

那究竟为什么需要多个虚指针?将对象内存布局和虚表结构搞清楚之后,答案是不是呼之欲出呢?

是的,因为这样可以保证在将子类指针/引用转换成基类指针时编译器可以直接根据对像的内存布局进行偏移,从而使得指向的第一个内容为虚指针,进而实现多态(根据静态类型执行相应动作)。

以上就是小编为大家带来的浅谈C++中派生类对象的内存布局全部内容了,希望大家多多支持我们~

(0)

相关推荐

  • 详谈C++中虚基类在派生类中的内存布局

    今天重温C++的知识,当看到虚基类这点的时候,那时候也没有太过追究,就是知道虚基类是消除了类继承之间的二义性问题而已,可是很是好奇,它是怎么消除的,内存布局是怎么分配的呢?于是就深入研究了一下,具体的原理如下所示: 在C++中,obj是一个类的对象,p是指向obj的指针,该类里面有个数据成员mem,请问obj.mem和p->mem在实现和效率上有什么不同. 答案是:只有一种情况下才有重大差异,该情况必须满足以下3个条件: (1).obj 是一个虚拟继承的派生类的对象 (2).mem是从虚拟基类派

  • C++中基类和派生类之间的转换实例教程

    本文实例讲解了C++中基类和派生类之间的转换.对于深入理解C++面向对象程序设计有一定的帮助作用.此处需要注意:本文实例讲解内容的前提是派生类继承基类的方式是公有继承,关键字public.具体分析如下: 以下程序为讲解示例: #include<iostream> using namespace std; class A { public: A(int m1, int n1):m(m1), n(n1){} void display(); private: int m; int n; }; voi

  • 详解C++中基类与派生类的转换以及虚基类

    C++基类与派生类的转换 在公用继承.私有继承和保护继承中,只有公用继承能较好地保留基类的特征,它保留了除构造函数和析构函数以外的基类所有成员,基类的公用或保护成员的访问权限在派生类中全部都按原样保留下来了,在派生类外可以调用基类的公用成员函数访问基类的私有成员.因此,公用派生类具有基类的全部功能,所有基类能够实现的功能, 公用派生类都能实现.而非公用派生类(私有或保护派生类)不能实现基类的全部功能(例如在派生类外不能调用基类的公用成员函数访问基类的私有成员).因此,只有公用派生类才是基类真正的

  • 实例讲解C++编程中的虚函数与虚基类

    虚函数 ① #include "stdafx.h" #include <iostream> using namespace std; class B0//基类B0声明 { public: void display(){cout<<"B0::display()"<<endl;}//公有成员函数 }; class B1: public B0//公有派生类B1声明 { public: void display(){cout<<

  • 浅谈C++中派生类对象的内存布局

    主要从三个方面来讲: 1 单一继承 2 多重继承 3 虚拟继承 1 单一继承 (1)派生类完全拥有基类的内存布局,并保证其完整性. 派生类可以看作是完整的基类的Object再加上派生类自己的Object.如果基类中没有虚成员函数,那么派生类与具有相同功能的非派生类将不带来任何性能上的差异.另外,一定要保证基类的完整性.实际内存布局由编译器自己决定,VS里,把虚指针放在最前边,接着是基类的Object,最后是派生类自己的object.举个栗子: class A { int b; char c; }

  • 浅谈JavaScript 中有关时间对象的方法

    ECMAScript中的Date类型是在早期 Java 中的 Java.unile.Date 类基础上构建的.为此 Date 类型使用自 UTC (Coordinated Universal Time, 国际协调时间)1970年1月1日午夜开始经过的毫秒数来保存日期. 在这种数据存储格式下, Date 类型保存的日期能够精确到1970年1月1日之前或之后的285616年 •Date.parse(string) 接受一个表示日期的字符串参数,然后尝试根据这个字符串返回相应日期的毫秒数,不能转换则返

  • 浅谈Java中对类的主动引用和被动引用

    本文研究的主要是Java中类的主动引用和被动引用,具体介绍如下. 主动引用,这里介绍的是主动引用的五种场景 1.遇到new,getstatic,putstatic,invokestatic这4条字节码指令时,类如果没初始化就会被初始化,创建对象,读取或设置静态字段,调用静态方法. 2.反射 3.子类初始化前会先初始化父类 4.包含main方法的类,虚拟机启动时会先初始化该类 5.使用jdk的动态语言支持时(不明) 被动引用: class SuperClass{ static{ syso("sup

  • 浅谈java中BigDecimal类的简单用法

    一.BigDecimal概述 ​ Java在java.math包中提供的API类BigDecimal,用来对超过16位有效位的数进行精确的运算.双精度浮点型变量double可以处理16位有效数,但在实际应用中,可能需要对更大或者更小的数进行运算和处理.一般情况下,对于那些不需要准确计算精度的数字,我们可以直接使用Float和Double处理,但是Double.valueOf(String) 和Float.valueOf(String)会丢失精度.所以开发中,如果我们需要精确计算的结果,则必须使用

  • 浅谈java中math类中三种取整函数的区别

    math类中三大取整函数 1.ceil 2.floor 3.round 其实三种取整函数挺简单的.只要记住三个函数名翻译过来的汉语便能轻松理解三大函数,下面一一介绍 1.ceil,意思是天花板,java中叫做向上取整,大于等于该数字的最接近的整数 例: math.ceil(13.2)=14 math.ceil(-13.2)=-13 2.floor,意思是地板,java中叫做向下取整,小于等于该数字的最接近的整数 例: math.floor(13.2)=13 math.floor(-13.2)=-

  • 浅谈java中对集合对象list的几种循环访问

    java中对集合对象list的几种循环访问的总结如下  1 经典的for循环 public static void main(String[] args) { List<String> list = new ArrayList(); list.add("123"); list.add("java"); list.add("j2ee"); System.out.println("=========经典的for循环=======

  • 浅谈js中StringBuffer类的实现方法及使用

    如下所示: <strong>JAVA中有一个StringBuffer类,js中却没有下面来自己实现一个简单的js的StringBuffer类.</strong> //创建一个StringBuffer类 ,此类有两个方法:一个是append方法一个是toString方法 function StringBuffer() { this.__strings__ = []; }; StringBuffer.prototype.append = function(str) { this.__s

  • 浅谈Python中的可变对象和不可变对象

    什么是可变/不可变对象 不可变对象,该对象所指向的内存中的值不能被改变.当改变某个变量时候,由于其所指的值不能被改变,相当于把原来的值复制一份后再改变,这会开辟一个新的地址,变量再指向这个新的地址. 可变对象,该对象所指向的内存中的值可以被改变.变量(准确的说是引用)改变后,实际上是其所指的值直接发生改变,并没有发生复制行为,也没有开辟新的出地址,通俗点说就是原地改变. Python中,数值类型(int和float).字符串str.元组tuple都是不可变类型.而列表list.字典dict.集合

  • 浅谈Java中Properties类的详细使用

    目录 一.Properties 类 二.打印JVM参数 三.打印自定义.properties文件中的值 3.1.list输出到控制台用绝对路径加载 3.2.propertyNames输出getClass()加载 3.3.stringPropertyNames输出getClassLoader加载(推荐) 四.获取值getProperties 五.写入到Properties文件 5.1.普通写入,中文时乱码 5.2.解决乱码写入的问题 六.加载和导出到xml配置文件 6.1.导出到.xml配置文件s

  • 浅谈C#中List<T>对象的深度拷贝问题

    一.List<T>对象中的T是值类型的情况(int 类型等) 对于值类型的List直接用以下方法就可以复制: List<T> oldList = new List<T>(); oldList.Add(..); List<T> newList = new List<T>(oldList); 二.List<T>对象中的T是引用类型的情况(例如自定义的实体类) 1.对于引用类型的List无法用以上方法进行复制,只会复制List中对象的引用,

随机推荐