python导入csv文件出现SyntaxError问题分析

背景

np.loadtxt()用于从文本加载数据。

文本文件中的每一行必须含有相同的数据。

***

loadtxt(fname,dtype=<class'float'>,comments='#',delimiter=None,converters=None,skiprows=0,usecols=None,unpack=False,ndmin=0)

fname要读取的文件、文件名、或生成器。

dtype数据类型,默认float。

comments注释。

delimiter分隔符,默认是空格。

skiprows跳过前几行读取,默认是0,必须是int整型。

usecols:要读取哪些列,0是第一列。例如,usecols=(1,4,5)将提取第2,第5和第6列。默认读取所有列。

unpack如果为True,将分列读取。

问题

今天在ipython中读取文件时,

代码为:

import numpy as np
x = np.loadtxt('C:\Users\sunshine\Desktop\scjym_3yNp3Gj\源数据\000001.csv',delimiter= ',',skiprows=(1),usecols= (1,4,6),unpack= False)

出现下面的错误:

SyntaxError: (unicode error) 'unicodeescape' codec can't decode bytes in position 2-3: truncated \UXXXXXXXX escape

编码错误,经搜索问题,发现采用如下解决方案:

r'C:\Users\expoperialed\Desktop\Python'
'C:\\Users\\expoperialed\\Desktop\\Python'
'C:/Users/expoperialed/Desktop/Python'

看到这里我就明白自己错在哪儿了。

书写字符串有几个需要注意的地方:

1.长字符串

非常长的字符串,跨多行时,可以使用三个引号代替普通引号。

即:

print('''This is a very long string.
it will continue.
and it's not over yet.
''hello,world''
still here.'''

可以注意到,使用这种方式时,字符串中可以同时使用单引号和双引号

2.原始字符串

print(r'c:\nwhere')

反斜线有特殊的作用,它会转义,可以帮助我们在字符串中加入单引号和双引号等不能直接加入的内容。

\n,换行符,可以存放于字符串中。

以上代码块中,很显然我们是想要一个路径,而如果不使用原始字符串,我们就会得到

c:where。

对,为了防止这种情况,我们还可以使用反斜线进行转义,但是如果这个路径很长,就像本文的路径:

C:\\\Users\\\sunshine\\\Desktop\\\scjym_3yNp3Gj\\\源数据\\\000001.csv

使用双斜线,就会很麻烦。

这时,我们就可以用原始字符串。

原始字符串以r开头。

原始字符串结尾不能是反斜线。

如要结尾用反斜线,print(r'C:\Programfiles\foo\bar''\\')C:\Programfiles\foo\bar\

在常规python字符串中,\U字符组合表示扩展的Unicode代码点转义。

因此这里出现了错误。

python导入csv文件的三种方法

#原始的方式
lines = [line.split(',') for line in open('iris.csv')]
df = [[float(x) for x in line[:4]] for line in lines[1:]]
#使用numpy包
import numpy as np
lines = np.loadtxt('iris.csv',delimiter=',',dtype='str')
df = lines[1:,:4].astype('float')
#使用pandas包
import pandas as pd
df = pd.read_csv('iris.csv')
df=df.ix[:,:4]

这三种方法中最后一种最简单,不过花费时间比较长一点,第一种最麻烦,不过用时最短。这个可以通过ipython中的magic函数%%timeit来看。

总结

以上就是本文关于python导入csv文件出现SyntaxError问题分析的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

(0)

相关推荐

  • Python操作csv文件实例详解

    一.Python读取csv文件 说明:以Python3.x为例 #读取csv文件方法1 import csv csvfile = open('csvWrite.csv',newline='')#打开一个文件 csvReader = csv.reader(csvfile)#返回的可迭代类型 print(type(csvReader)) for content in csvReader: print(content) csvfile.close()#关闭文件 //运行结果如下: <class '_c

  • Python写入CSV文件的方法

    本文实例讲述了Python写入CSV文件的方法.分享给大家供大家参考.具体如下: # _*_ coding:utf-8 _*_ #xiaohei.python.seo.call.me:) #win+python2.7.x import csv csvfile = file('csvtest.csv', 'wb') writer = csv.writer(csvfile) writer.writerow(['id', 'url', 'keywords']) data = [ ('1', 'http

  • Python 3.x读写csv文件中数字的方法示例

    前言 本文主要给大家介绍了关于Python3.x读写csv文件中数字的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. 读写csv文件 读文件时先产生str的列表,把最后的换行符删掉:然后一个个str转换成int ## 读写csv文件 csv_file = 'datas.csv' csv = open(csv_file,'w') for i in range(1,20): csv.write(str(i) + ',') if i % 10 == 0: csv.write

  • Python程序中用csv模块来操作csv文件的基本使用教程

    CSV全称为"Comma Separated Values",是一种格式化的文件,由行和列组成,分隔符可以根据需要来变化. 如下面为一csv文件: Title,Release Date,Director And Now For Something Completely Different,1971,Ian MacNaughton Monty Python And The Holy Grail,1975,Terry Gilliam and Terry Jones Monty Python

  • 在Python的Django框架中生成CSV文件的方法

    CSV 是一种简单的数据格式,通常为电子表格软件所使用. 它主要是由一系列的表格行组成,每行中单元格之间使用逗号(CSV 是 逗号分隔数值(comma-separated values) 的缩写)隔开.例如,下面是CSV格式的"不守规矩"的飞机乘客表. Year,Unruly Airline Passengers 1995,146 1996,184 1997,235 1998,200 1999,226 2000,251 2001,299 2002,273 2003,281 2004,3

  • python实现将html表格转换成CSV文件的方法

    本文实例讲述了python实现将html表格转换成CSV文件的方法.分享给大家供大家参考.具体如下: 使用方法:python html2csv.py *.html 这段代码使用了 HTMLParser 模块 #!/usr/bin/python # -*- coding: iso-8859-1 -*- # Hello, this program is written in Python - http://python.org programname = 'html2csv - version 20

  • Python实现求两个csv文件交集的方法

    本文实例讲述了Python实现求两个csv文件交集的方法.分享给大家供大家参考,具体如下: #!/usr/bin/env python rd3 = open('data_17_17_2.csv') base = open('data_17_17_3.csv') wr3 = open('delNoBuyed3DayAndStoreAndInCar4.5.2.csv','w+') bsData = base.readlines() i = 1 for key in rd3: if key in bs

  • 使用Python对Csv文件操作实例代码

    csv是Comma-Separated Values的缩写,是用文本文件形式储存的表格数据,比如如下的表格: 就可以存储为csv文件,文件内容是: No.,Name,Age,Score 1,mayi,18,99 2,jack,21,89 3,tom,25,95 4,rain,19,80 假设上述csv文件保存为"test.csv" 1.读文件 如何用Python像操作Excel一样提取其中的一列,即一个字段,利用Python自带的csv模块,有两种方法可以实现: 第一种方法使用read

  • python导入csv文件出现SyntaxError问题分析

    背景 np.loadtxt()用于从文本加载数据. 文本文件中的每一行必须含有相同的数据. *** loadtxt(fname,dtype=<class'float'>,comments='#',delimiter=None,converters=None,skiprows=0,usecols=None,unpack=False,ndmin=0) fname要读取的文件.文件名.或生成器. dtype数据类型,默认float. comments注释. delimiter分隔符,默认是空格. s

  • Python使用pandas导入csv文件内容的示例代码

    目录 使用pandas导入csv文件内容 1. 默认导入 2. 指定分隔符 3. 指定读取行数 4. 指定编码格式 5. 列标题与数据对齐 使用pandas导入csv文件内容 1. 默认导入 在Python中导入.csv文件用的方法是read_csv(). 使用read_csv()进行导入时,指定文件名即可 import pandas as pd df = pd.read_csv(r'G:\test.csv') print(df) 2. 指定分隔符 read_csv()默认文件中的数据都是以逗号

  • Python之csv文件从MySQL数据库导入导出的方法

    Python从MySQL数据库中导出csv文件处理 csv文件导入MySQL数据库 import pymysql import csv import codecs def get_conn(): conn = pymysql.connect(host='localhost', port=3306, user='root', passwd='root', db='test_csv', charset='utf8') return conn def insert(cur, sql, args): c

  • Python读取csv文件做K-means分析详情

    目录 1.运行环境及数据 2.基于时间序列的分析2D 2.1 2000行数据结果展示 2.2 6950行数据结果展示 2.3 300M,约105万行数据结果展示 3.经纬度高程三维坐标分类显示3D-空间点聚类 3.1 2000行数据结果显示 3.2 300M的CSV数据计算显示效果 1.运行环境及数据 Python3.7.PyCharm Community Edition 2021.1.1,win10系统. 使用的库:matplotlib.numpy.sklearn.pandas等 数据:CSV

  • python 读取.csv文件数据到数组(矩阵)的实例讲解

    利用numpy库 (缺点:有缺失值就无法读取) 读: import numpy my_matrix = numpy.loadtxt(open("1.csv","rb"),delimiter=",",skiprows=0) 写: numpy.savetxt('2.csv', my_matrix, delimiter = ',') 可能遇到的问题: SyntaxError: (unicode error) 'unicodeescape' codec

  • python中csv文件的若干读写方法小结

    如下所示: //用普通文本文件方式打开和操作 with open("'file.csv'") as cf: lines=cf.readlines() ...... //用普通文本方式打开,用csv模块操作 import csv with open("file.csv") as cf: lines=csv.reader(cf) for line in lines: print(line) ...... import csv headers=['id','usernam

  • From CSV to SQLite3 by python 导入csv到sqlite实例

    初次使用SQLite,尝试把之前一个csv文件导进去,看了网上各种教程,大多是在SQLite shell模式下使用的,比较麻烦, 这里用了panda,就方便多了,仅作示例供参考. 第一篇开博,想不好写什么,就把这个拎上来吧. import pandas import csv, sqlite3 conn= sqlite3.connect("dbname.db") df = pandas.read_csv('d:\\filefolder\csvname.csv') df.to_sql('t

  • jupyter 导入csv文件方式

    先将准备的文件上传到自己的jupyter工作空间 import numpy as np import pandas as pd housing = pd.read_csv('housing.csv') 补充知识:在jupyter中读取CSV文件时出现'utf-8' codec can't decode byte 0xd5 in position 0: invalid continuation byte解决方法 导入 import pandas as pd 使用pd.read_csv()读csv文

  • 如何运用python读写CSV文件

    目录 1.使用基础Python代码来读写和处理CSV文件 2.使用pandas读写和处理CSV文件 3.使用内置csv读写和处理CSV文件 1.使用基础Python代码来读写和处理CSV文件 import sys #使用基础Python代码来读写和处理CSV文件 input_file = sys.argv[1] output_file = sys.argv[2] with open(input_file, 'r', newline='') as filereader: with open(out

  • Python实现csv文件(点表和线表)转换为shapefile文件的方法

    Python实现csv文件(点表和线表)转换为shapefile文件 说明 点表使用的geometry坐标是wkbPoint(几何点坐标) 线表使用的geometry坐标是wkbLineString(多点坐标) 区别详细看截图 参考别人写的方法加了注释,把点和边的转化写成了函数,每次转成功后加了读取shp文件来测试是否转化成功 注意事项 1.解决shp dbf 文件中文编码 #gdal.SetConfigOption("SHAPE_ENCODING", "") #g

随机推荐