用TensorFlow实现lasso回归和岭回归算法的示例

也有些正则方法可以限制回归算法输出结果中系数的影响,其中最常用的两种正则方法是lasso回归和岭回归。

lasso回归和岭回归算法跟常规线性回归算法极其相似,有一点不同的是,在公式中增加正则项来限制斜率(或者净斜率)。这样做的主要原因是限制特征对因变量的影响,通过增加一个依赖斜率A的损失函数实现。

对于lasso回归算法,在损失函数上增加一项:斜率A的某个给定倍数。我们使用TensorFlow的逻辑操作,但没有这些操作相关的梯度,而是使用阶跃函数的连续估计,也称作连续阶跃函数,其会在截止点跳跃扩大。一会就可以看到如何使用lasso回归算法。

对于岭回归算法,增加一个L2范数,即斜率系数的L2正则。

# LASSO and Ridge Regression
# lasso回归和岭回归
#
# This function shows how to use TensorFlow to solve LASSO or
# Ridge regression for
# y = Ax + b
#
# We will use the iris data, specifically:
#  y = Sepal Length
#  x = Petal Width

# import required libraries
import matplotlib.pyplot as plt
import sys
import numpy as np
import tensorflow as tf
from sklearn import datasets
from tensorflow.python.framework import ops

# Specify 'Ridge' or 'LASSO'
regression_type = 'LASSO'

# clear out old graph
ops.reset_default_graph()

# Create graph
sess = tf.Session()

###
# Load iris data
###

# iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)]
iris = datasets.load_iris()
x_vals = np.array([x[3] for x in iris.data])
y_vals = np.array([y[0] for y in iris.data])

###
# Model Parameters
###

# Declare batch size
batch_size = 50

# Initialize placeholders
x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)

# make results reproducible
seed = 13
np.random.seed(seed)
tf.set_random_seed(seed)

# Create variables for linear regression
A = tf.Variable(tf.random_normal(shape=[1,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))

# Declare model operations
model_output = tf.add(tf.matmul(x_data, A), b)

###
# Loss Functions
###

# Select appropriate loss function based on regression type

if regression_type == 'LASSO':
  # Declare Lasso loss function
  # 增加损失函数,其为改良过的连续阶跃函数,lasso回归的截止点设为0.9。
  # 这意味着限制斜率系数不超过0.9
  # Lasso Loss = L2_Loss + heavyside_step,
  # Where heavyside_step ~ 0 if A < constant, otherwise ~ 99
  lasso_param = tf.constant(0.9)
  heavyside_step = tf.truediv(1., tf.add(1., tf.exp(tf.multiply(-50., tf.subtract(A, lasso_param)))))
  regularization_param = tf.multiply(heavyside_step, 99.)
  loss = tf.add(tf.reduce_mean(tf.square(y_target - model_output)), regularization_param)

elif regression_type == 'Ridge':
  # Declare the Ridge loss function
  # Ridge loss = L2_loss + L2 norm of slope
  ridge_param = tf.constant(1.)
  ridge_loss = tf.reduce_mean(tf.square(A))
  loss = tf.expand_dims(tf.add(tf.reduce_mean(tf.square(y_target - model_output)), tf.multiply(ridge_param, ridge_loss)), 0)

else:
  print('Invalid regression_type parameter value',file=sys.stderr)

###
# Optimizer
###

# Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.001)
train_step = my_opt.minimize(loss)

###
# Run regression
###

# Initialize variables
init = tf.global_variables_initializer()
sess.run(init)

# Training loop
loss_vec = []
for i in range(1500):
  rand_index = np.random.choice(len(x_vals), size=batch_size)
  rand_x = np.transpose([x_vals[rand_index]])
  rand_y = np.transpose([y_vals[rand_index]])
  sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
  temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
  loss_vec.append(temp_loss[0])
  if (i+1)%300==0:
    print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)) + ' b = ' + str(sess.run(b)))
    print('Loss = ' + str(temp_loss))
    print('\n')

###
# Extract regression results
###

# Get the optimal coefficients
[slope] = sess.run(A)
[y_intercept] = sess.run(b)

# Get best fit line
best_fit = []
for i in x_vals:
 best_fit.append(slope*i+y_intercept)

###
# Plot results
###

# Plot regression line against data points
plt.plot(x_vals, y_vals, 'o', label='Data Points')
plt.plot(x_vals, best_fit, 'r-', label='Best fit line', linewidth=3)
plt.legend(loc='upper left')
plt.title('Sepal Length vs Pedal Width')
plt.xlabel('Pedal Width')
plt.ylabel('Sepal Length')
plt.show()

# Plot loss over time
plt.plot(loss_vec, 'k-')
plt.title(regression_type + ' Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()

输出结果:

Step #300 A = [[ 0.77170753]] b = [[ 1.82499862]]
Loss = [[ 10.26473045]]
Step #600 A = [[ 0.75908542]] b = [[ 3.2220633]]
Loss = [[ 3.06292033]]
Step #900 A = [[ 0.74843585]] b = [[ 3.9975822]]
Loss = [[ 1.23220456]]
Step #1200 A = [[ 0.73752165]] b = [[ 4.42974091]]
Loss = [[ 0.57872057]]
Step #1500 A = [[ 0.72942668]] b = [[ 4.67253113]]
Loss = [[ 0.40874988]]

通过在标准线性回归估计的基础上,增加一个连续的阶跃函数,实现lasso回归算法。由于阶跃函数的坡度,我们需要注意步长,因为太大的步长会导致最终不收敛。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • 详解用TensorFlow实现逻辑回归算法
  • TensorFlow实现Softmax回归模型
  • 运用TensorFlow进行简单实现线性回归、梯度下降示例
  • 用tensorflow构建线性回归模型的示例代码
  • 用tensorflow实现弹性网络回归算法
  • 用TensorFlow实现戴明回归算法的示例
(0)

相关推荐

  • 运用TensorFlow进行简单实现线性回归、梯度下降示例

    线性回归属于监督学习,因此方法和监督学习应该是一样的,先给定一个训练集,根据这个训练集学习出一个线性函数,然后测试这个函数训练的好不好(即此函数是否足够拟合训练集数据),挑选出最好的函数(cost function最小)即可. 单变量线性回归: a) 因为是线性回归,所以学习到的函数为线性函数,即直线函数: b) 因为是单变量,因此只有一个x. 我们能够给出单变量线性回归的模型: 我们常称x为feature,h(x)为hypothesis. 上面介绍的方法中,我们肯定有一个疑问,怎样能够看出线性

  • 详解用TensorFlow实现逻辑回归算法

    本文将实现逻辑回归算法,预测低出生体重的概率. # Logistic Regression # 逻辑回归 #---------------------------------- # # This function shows how to use TensorFlow to # solve logistic regression. # y = sigmoid(Ax + b) # # We will use the low birth weight data, specifically: # y

  • 用tensorflow实现弹性网络回归算法

    本文实例为大家分享了tensorflow实现弹性网络回归算法,供大家参考,具体内容如下 python代码: #用tensorflow实现弹性网络算法(多变量) #使用鸢尾花数据集,后三个特征作为特征,用来预测第一个特征. #1 导入必要的编程库,创建计算图,加载数据集 import matplotlib.pyplot as plt import tensorflow as tf import numpy as np from sklearn import datasets from tensor

  • TensorFlow实现Softmax回归模型

    一.概述及完整代码 对MNIST(MixedNational Institute of Standard and Technology database)这个非常简单的机器视觉数据集,Tensorflow为我们进行了方便的封装,可以直接加载MNIST数据成我们期望的格式.本程序使用Softmax Regression训练手写数字识别的分类模型. 先看完整代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist imp

  • 用TensorFlow实现戴明回归算法的示例

    如果最小二乘线性回归算法最小化到回归直线的竖直距离(即,平行于y轴方向),则戴明回归最小化到回归直线的总距离(即,垂直于回归直线).其最小化x值和y值两个方向的误差,具体的对比图如下图. 线性回归算法和戴明回归算法的区别.左边的线性回归最小化到回归直线的竖直距离:右边的戴明回归最小化到回归直线的总距离. 线性回归算法的损失函数最小化竖直距离:而这里需要最小化总距离.给定直线的斜率和截距,则求解一个点到直线的垂直距离有已知的几何公式.代入几何公式并使TensorFlow最小化距离. 损失函数是由分

  • 用tensorflow构建线性回归模型的示例代码

    用tensorflow构建简单的线性回归模型是tensorflow的一个基础样例,但是原有的样例存在一些问题,我在实际调试的过程中做了一点自己的改进,并且有一些体会. 首先总结一下tf构建模型的总体套路 1.先定义模型的整体图结构,未知的部分,比如输入就用placeholder来代替. 2.再定义最后与目标的误差函数. 3.最后选择优化方法. 另外几个值得注意的地方是: 1.tensorflow构建模型第一步是先用代码搭建图模型,此时图模型是静止的,是不产生任何运算结果的,必须使用Session

  • 用TensorFlow实现lasso回归和岭回归算法的示例

    也有些正则方法可以限制回归算法输出结果中系数的影响,其中最常用的两种正则方法是lasso回归和岭回归. lasso回归和岭回归算法跟常规线性回归算法极其相似,有一点不同的是,在公式中增加正则项来限制斜率(或者净斜率).这样做的主要原因是限制特征对因变量的影响,通过增加一个依赖斜率A的损失函数实现. 对于lasso回归算法,在损失函数上增加一项:斜率A的某个给定倍数.我们使用TensorFlow的逻辑操作,但没有这些操作相关的梯度,而是使用阶跃函数的连续估计,也称作连续阶跃函数,其会在截止点跳跃扩

  • R语言实现岭回归的示例代码

    岭参数的一般选择原则 选择k(或lambda)值,使得: 各回归系数的岭估计基本稳定 用最小二乘估计时符号不合理的回归系数,其岭回归的符号变得合理 回归系数没有不合乎实际意义的绝对值 残差平方和增大的不多 用R语言进行岭回归 这里使用MASS包中的longley数据集,进行岭回归分析(longley数据集中的变量具有显著的多重共线性).从而分析使用岭回归进行多重共线性的解决. 首相将longley数据集中的第一列数据命名为"y",并使用岭回归创建线性模型: 显示当y为因变量,其余各个变

  • python机器学习基础线性回归与岭回归算法详解

    目录 一.什么是线性回归 1.线性回归简述 2.数组和矩阵 数组 矩阵 3.线性回归的算法 二.权重的求解 1.正规方程 2.梯度下降 三.线性回归案例 1.案例概述 2.数据获取 3.数据分割 4.数据标准化 5.模型训练 6.回归性能评估 7.梯度下降与正规方程区别 四.岭回归Ridge 1.过拟合与欠拟合 2.正则化 一.什么是线性回归 1.线性回归简述 线性回归,是一种趋势,通过这个趋势,我们能预测所需要得到的大致目标值.线性关系在二维中是直线关系,三维中是平面关系. 我们可以使用如下模

  • 人工智能-Python实现岭回归

    1 概述 1.1 线性回归 对于一般地线性回归问题,参数的求解采用的是最小二乘法,其目标函数如下: 参数 w 的求解,也可以使用如下矩阵方法进行: 这个公式看着吓人,其实推导过程简单由(推导而来,纸老虎)对于矩阵 X ,若某些列线性相关性较大(即训练样本中某些属性线性相关),就会导致的值接近 0 ,在计算时就会出现不稳定性.结论 : 传统的基于最小二乘的线性回归法缺乏稳定性. 1.2 岭回归 岭回归的优化目标:  对应的矩阵求解方法为:          岭回归(ridge regression

  • python tensorflow学习之识别单张图片的实现的示例

    假设我们已经安装好了tensorflow. 一般在安装好tensorflow后,都会跑它的demo,而最常见的demo就是手写数字识别的demo,也就是mnist数据集. 然而我们仅仅是跑了它的demo而已,可能很多人会有和我一样的想法,如果拿来一张数字图片,如何应用我们训练的网络模型来识别出来,下面我们就以mnist的demo来实现它. 1.训练模型 首先我们要训练好模型,并且把模型model.ckpt保存到指定文件夹 saver = tf.train.Saver() saver.save(s

  • tensorflow实现简单逻辑回归

    逻辑回归是机器学习中很简答的一个栗子,这篇文章就是要介绍如何使用tensorflow实现一个简单的逻辑回归算法. 逻辑回归可以看作只有一层网络的前向神经网络,并且参数连接的权重只是一个值,而非矩阵.公式为:y_predict=logistic(X*W+b),其中X为输入,W为输入与隐含层之间的权重,b为隐含层神经元的偏置,而logistic为激活函数,一般为sigmoid或者tanh, y_predict为最终预测结果. 逻辑回归是一种分类器模型,需要木便函数不断的优化参数,这里目标函数为y_p

  • tensorflow实现逻辑回归模型

    逻辑回归模型 逻辑回归是应用非常广泛的一个分类机器学习算法,它将数据拟合到一个logit函数(或者叫做logistic函数)中,从而能够完成对事件发生的概率进行预测. import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data #下载好的mnist数据集存在F:/mnist/data/中 m

  • R语言实现LASSO回归的方法

    Lasso回归又称为套索回归,是Robert Tibshirani于1996年提出的一种新的变量选择技术.Lasso是一种收缩估计方法,其基本思想是在回归系数的绝对值之和小于一个常数的约束条件下,使残差平方和最小化,从而能够产生某些严格等于0的回归系数,进一步得到可以解释的模型.R语言中有多个包可以实现Lasso回归,这里使用lars包实现. 1.利用lars函数实现lasso回归并可视化显示 x = as.matrix(data5[, 2:7]) #data5为自己的数据集 y = as.ma

随机推荐