C++实现各种排序算法类汇总

C++可实现各种排序算法类,比如直接插入排序、折半插入排序、Shell排序、归并排序、简单选择排序、基数排序、对data数组中的元素进行希尔排序、冒泡排序、递归实现、堆排序、用数组实现的基数排序等。

具体代码如下:

#ifndef SORT_H
#define SORT_H
#include <iostream>
#include <queue>
using namespace std;
// 1.直接插入排序
template<class ElemType>
void InsertSort(ElemType data[], int n);
// 2.折半插入排序
template<class ElemType>
void BInsertSort(ElemType data[], int n);
// 3.Shell排序
// 对data数组中的元素进行希尔排序,n为该数组大小
// increments为增量序列,incrementsLength为增量序列的大小
template<class ElemType>
void ShellSort(ElemType data[],int increments[], int n, int incrementsLength);
// 1.Bubble Sort
template<class ElemType>
void BubbleSort(ElemType data[], int n);
// 2.快速排序
template<class ElemType>
void QuickSort(ElemType data[], int n);
//////////////////
// Merge Sort
//////////////////
// 归并排序
template<class ElemType>
void MergeSort(ElemType data[],int n);
template<class ElemType>
void MergeSortNonRecursion(ElemType data[], int n);
//////////////////
// Selection sort
//////////////////
// 简单选择排序
template<class ElemType>
void SelectionSort(ElemType data[], int n);
// 堆排序
template<class ElemType>
void HeapSort(ElemType data[],int n);
///////////////
// Radix Sort
///////////////
// 静态链表结点
const int DIGITS = 10;
const int RADIX = 10;
class SLList;
ostream& operator<<(ostream& os, SLList &s);// 由于VC++6.0使用using namespace std对于友元不支持
      // 故在类SLList之前做前向声明
      // 若使用其他C++编译器,这两句可删去
// 静态链表static linked list
// [0]:头结点
class SLList
{
 struct Node
 {
 int  key[DIGITS];
 int    info;
 int    next;
 }; 

 friend ostream& operator<<(ostream& os, SLList &s);
public:
 SLList():data(NULL),length(0){};
  ~SLList();
 void Arrange();
  void Init(int arr[],int n);
  void RadixSort();
private:
  void Distribute( int[], int[], int);
 void Collection( int[], int[], int);
  Node *data;
  int length;
};
// 基数排序
void RadixSort(int data[], int n);
//void RadixSort(SLList&);
///////////////
// util
///////////////
template<class ElemType>
void Swap( ElemType& a, ElemType& b)
{
  ElemType c = a;
  a = b;
  b = c;
}
int init(int** data);
template<class ElemType>
void print(ElemType data[],int begin,int end);
// 直接插入排序,数组data用于存放待排序元素,n为待排序元素个数
template<class ElemType>
void InsertSort(ElemType data[], int n)
{
  ElemType tmp;
 int i, j;
  for (i = 1; i < n; i++){
    if ( data[i] > data[i - 1])
      continue;
    tmp = data[i];                // 保存待插入的元素
 data[i] = data[i - 1];
    for ( j = i - 1; j > 0 && data[j - 1] > tmp;j--)
      data[j] = data[j - 1];          // 元素后移
    data[j] = tmp;                // 插入到正确位置
  }
}
// 折半插入排序
template<class ElemType>
void BInsertSort(ElemType data[], int n)
{
  ElemType tmp;
 int i, j, mid, low, high;
  for (i = 1; i < n; i++){
    tmp = data[i];           // 保存待插入的元素
    low = 0;
    high = i-1;
    while (low <= high){        // 在data[low..high]中折半查找有序插入的位置
      mid = (low + high) / 2;      // 折半
      if( tmp < data[mid])
        high = --mid;         // 插入点在低半区
      else
        low = ++mid;         // 插入点在高半区
    }
    for(j = i - 1; j >= low; j--)
      data[j + 1] = data[j];     // 元素后移
    data[low] = tmp;          // 插入到正确位置
  }
}
// 对data数组中的元素进行希尔排序,n为该数组大小
// increments为增量序列,incrementsLength为增量序列的大小
template<class ElemType>
void ShellSort(ElemType data[], int increments[], int n, int incrementsLength)
{
  int i, j, k;
  ElemType tmp;
 for ( k = 0; k < incrementsLength; k++){    // 进行以increments[k]为增量的排序
    for ( i = increments[k]; i < n; i++){
      tmp = data[i];
      for ( j = i; j >= increments[k]; j -= increments[k]){
        if ( tmp >= data[j - increments[k]])
          break;
        data[j] = data[j - increments[k]];
      }
      data[j] = tmp;
    }
  }
}
// 冒泡排序
template<class ElemType>
void BubbleSort(ElemType data[], int n)
{
 int lastSwapIndex = n - 1; // 用于记录最后一次交换的元素下标
 int i, j;
  for (i = lastSwapIndex; i > 0;i = lastSwapIndex)
 {
 lastSwapIndex = 0;
 for (j = 0; j < i; j++)
  if (data[j] > data[j + 1]){
        Swap( data[j],data[j + 1]);
  lastSwapIndex = j;
  }
 }
}
//快速排序
template<class ElemType>
int Partition(ElemType data[] , int low , int high)
{
  ElemType pivot = data[low];
  while (low < high){
    while (low < high && data[high] >= pivot)
  high--;
    data[low] = data[high];
    while (low < high && pivot >= data[low])
  low++;
    data[high] = data[low];
  }
  data[low] = pivot;
  return low;
}
template<class ElemType>
void QuickSort(ElemType data[], int begin, int end)
{
  if (begin >= end)
 return;
  int pivot = Partition(data , begin , end);
  QuickSort(data , begin , pivot - 1);
  QuickSort(data , pivot + 1, end);
}
template<class ElemType>
void QuickSort(ElemType data[], int n)
{
  if (n < 2)
    return;
  QuickSort(data, 0, n-1);
}
// 将数组data中,[lptr...rptr-1][rptr...rightEnd]两部分的元素进行合并
// tmpArr为合并时的辅存空间
template<class ElemType>
void Merge(ElemType data[], ElemType tmpArr[], int lptr, int rptr, int rightEnd)
{
  int leftEnd = rptr - 1;
  int ptr,i;
  ptr = i = lptr;
  while (lptr <= leftEnd && rptr <= rightEnd)
    if (data[lptr] <= data[rptr])
      tmpArr[ptr++] = data[lptr++];
    else
      tmpArr[ptr++] = data[rptr++];
  while (lptr <= leftEnd)
    tmpArr[ptr++] = data[lptr++];
  while (rptr <= rightEnd)
    tmpArr[ptr++] = data[rptr++];
  for (;i <= rightEnd; i++)
    data[i] = tmpArr[i];
}
// 递归实现
// 将数组data中,[begin...end]的元素进行归并排序
template<class ElemType>
void MSort(ElemType data[], ElemType tmpArr[], int begin, int end)
{
  int middle;
  if ( begin >= end)
    return;
  middle = (begin + end)/2;   // 将data平分为[begin..middle]和[middle..end]
  MSort( data, tmpArr, begin, middle);  // 递归前半部分
  MSort( data, tmpArr, middle + 1, end);  // 递归后半部分
  Merge( data, tmpArr, begin, middle + 1, end); // 将data[begin..middle],data[middle..end]进行归并
}
template<class ElemType>
void MergeSort(ElemType data[], int n)
{
  ElemType* pArr = NULL;
  pArr = new ElemType[n];
  MSort( data,pArr,0,n-1);
  delete[] pArr;
}
// 非递归实现
template<class ElemType>
void MPass(ElemType data[], ElemType tmpArr[], int n, int mergeLength)
{
 int i = 0;
 while (i <= n - 2 * mergeLength){
 Merge(data, tmpArr, i, i + mergeLength, i + 2 * mergeLength - 1);
 i = i + 2 * mergeLength;
 }
 if (i + mergeLength < n)
 Merge(data, tmpArr, i, i + mergeLength, n - 1);
}
template<class ElemType>
void MergeSortNonRecursion(ElemType data[], int n)
{
 int mergeLength = 1;
 ElemType* pArr = NULL;
 pArr = new ElemType[n];
 while (mergeLength < n){
 MPass(data, pArr, n, mergeLength);
 mergeLength *= 2;
 }
 delete[] pArr;
}
// 简单选择排序
template<class ElemType>
void SelectionSort(ElemType data[], int n)
{
 int i, j, min;
  for (i = 0; i < n; i++){
    min = i;
    for (j = i + 1; j < n; j++){
      if ( data[j] < data[min])
        min = j;
    }
    Swap(data[i],data[min]);
  }
}
// 堆排序
// i为指定元素在数组中的下标
// 返回指定结点的左孩子在数组中的下标
inline int LeftChild(int i)
{
  return 2 * i + 1;
}
template<class ElemType>
void HeapAdjust(ElemType data[], int i, int n)
{
  ElemType tmp;
  int child;
  for ( tmp = data[i]; LeftChild(i) < n; i = child){
    child = LeftChild(i);
    if (child != n - 1 && data[child + 1] > data[child])  // 取较大的孩子结点
      child++;
    if (tmp < data[child])
      data[i] = data[child];
    else
      break;
  }
  data[i] = tmp;
}
template<class ElemType>
void HeapSort(ElemType data[], int n)
{
  int i;
  for (i = n/2; i >= 0; i--)  // 建堆
    HeapAdjust(data, i, n);
  for (i = n - 1;i > 0; i--){  // 将堆的根结点与最后的一个叶结点交换,并进行调整
    Swap(data[0],data[i]);
    HeapAdjust(data, 0, i);
  }
}
// 用数组实现的基数排序
void RadixSort(int data[], int n)
{
  const int radix = 10;
  const int digits = 10;
  int i,j,k,factor;
 queue<int> queues[radix];
  for ( i = 0,factor = 1; i < digits;i++,factor *= radix){
    for ( j = 0;j < n; j++)
      queues[(data[j]/factor)%radix].push(data[j]);    // 分配
    for ( k = j = 0; j < radix; j++,k++)          // 收集
      while (!queues[j].empty()){
        data[k] = queues[j].front();
        queues[j].pop();
      }
  }
}
// 分配
void SLList::Distribute(int front[], int rear[], int digit)
{
 int i, index;
 for (i = 0; i < RADIX; i++)
 front[i] = 0;
 for (i = data[0].next; i > 0; i = data[i].next){
 index = data[i].key[digit];
 if (front[index] == 0)
  front[index] = i;
 else
  data[rear[index]].next = i;
 rear[index] = i;
 }
}
// 收集
void SLList::Collection(int front[], int rear[], int digit)
{
 int i, current;
 for (i = 0; front[i] == 0; i++); // 找到第一个非空子表
 data[0].next = front[i];  // 头结点指向第一个非空子表中第一个结点
 current = rear[i++];
 for (; i < RADIX; i++){
 if (front[i] == 0)
  continue;
 data[current].next = front[i]; // 链接两个非空子表
 current = rear[i];
 }
 data[current].next = 0;
}
// 用SLList实现的基数排序
void SLList::RadixSort()
{
  int i;
  int front[RADIX],rear[RADIX];
  // 从最低位优先依次对各关键字进行分配收集
  for ( i = 0; i < DIGITS; i++){
    Distribute(front, rear, i);
    Collection(front, rear, i);
  }
}
SLList::~SLList()
{
  delete[] data;
  length = 0;
}
void SLList::Init(int arr[], int n)
{
  length = n + 1;
  if (data != NULL)
    delete[] data;
  data = new Node[n + 1];
  data[0].next = 1;
  for ( int i = 1; i <= n; i++){
    int value = data[i].info = arr[i - 1];
    for (int j = 0;j < 10; j++){
      data[i].key[j] = value % 10;// + '0';
      value /= 10;
    }
    data[i].next = i + 1;
  }
  data[n].next = 0;
}
// 根据链表中各结点的指针值调整元素位置,使得SLList中元素按关键字正序排列
void SLList::Arrange()
{
 int i, tmp;
 int current = data[0].next;   // current存放第一个元素的当前位置
 for (i = 1; i < length; i++){
 while (current < i)   // 找到第i个元素,并用current存放其在静态链表中当前位置
  current = data[current].next;
 tmp = data[current].next;
 if (current != i){
  Swap(data[current], data[i]); // 第i个元素调整到位
  data[i].next = current;  // 指向被移走的元素
 }
 current = tmp;    // 为找第i + 1个元素做准备
 }
}
ostream& operator<<(ostream& os,SLList &s)
{
 for (int i = 1; i < s.length; i++)
 cout << s.data[i].info << " ";
 os << endl;
 return os;
}
#endif
(0)

相关推荐

  • C++冒泡排序算法实例

    冒泡排序 大学学习数据结构与算法最开始的时候,就讲了冒泡排序:可见这个排序算法是多么的经典.冒泡排序是一种非常简单的排序算法,它重复地走访过要排序的数列,每一次比较两个数,按照升序或降序的规则,对比较的两个数进行交换.比如现在我要对以下数据进行排序: 10 3 8 0 6 9 2 当使用冒泡排序进行升序排序时,排序的步骤是这样的: 3 10 8 0 6 9 2  // 10和3进行对比,10>3,交换位置 3 8 10 0 6 9 2  // 10再和8进行对比,10>8,交换位置 3 8 0

  • C++中十种内部排序算法的比较分析

    C++中十种内部排序算法的比较分析 #include<iostream> #include<ctime> #include<fstream> using namespace std; #define MAXSIZE 1000 //可排序表的最大长度 #define SORTNUM 10 //测试10中排序方法 #define max 100 //基数排序时数据的最大位数不超过百位: typedef struct node { int data3; int next; }

  • C++选择排序算法实例

    选择排序 选择排序是一种简单直观的排序算法,它的工作原理如下.首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾.以此类推,直到所有元素均排序完毕. 选择排序的主要优点与数据移动有关.如果某个元素位于正确的最终位置上,则它不会被移动.选择排序每次交换一对元素,它们当中至少有一个将被移到其最终位置上,因此对n个元素的表进行排序总共进行至多n-1次交换.在所有的完全依靠交换去移动元素的排序方法中,选择排序属于非常

  • C++堆排序算法实例详解

    本文实例讲述了C++堆排序算法.分享给大家供大家参考,具体如下: 堆中元素的排列方式分为两种:max-heap或min-heap,前者每个节点的key都大于等于孩子节点的key,后者每个节点的key都小于等于孩子节点的key. 由于堆可以看成一个完全二叉树,可以使用连续空间的array来模拟完全二叉树,简单原始的实现如下: #include<iostream> int heapsize=0;//全局变量记录堆的大小 void heapSort(int array[],int n){ void

  • C++插入排序算法实例

    插入排序 没事喜欢看看数据结构和算法,增加自己对数据结构和算法的认识,同时也增加自己的编程基本功.插入排序是排序中比较常见的一种,理解起来非常简单.现在比如有以下数据需要进行排序: 10 3 8 0 6 9 2 当使用插入排序进行升序排序时,排序的步骤是这样的: 10 3 8 0 6 9 2 // 取元素3,去和10进行对比 3 10 8 0 6 9 2 // 由于10比3大,将10向后移动,将3放置在原来10的位置:再取8与前一个元素10进行对比 3 8 10 0 6 9 2 // 同理移动1

  • C++ 数据结构 堆排序的实现

    堆排序(heapsort)是一种比较快速的排序方式,它的时间复杂度为O(nlgn),并且堆排序具有空间原址性,任何时候只需要有限的空间来存储临时数据.我将用c++实现一个堆来简单分析一下. 堆排序的基本思想为: 1.升序排列,保持大堆:降序排列,保持小堆: 2.建立堆之后,将堆顶数据与堆中最后一个数据交换,堆大小减一,然后向下调整:直到堆中只剩下一个有效值: 下面我将简单分析一下: 第一步建立堆: 1.我用vector顺序表表示数组: 2.用仿函数实现大小堆随时切换,实现代码复用: 3.实现向下

  • 解读堆排序算法及用C++实现基于最大堆的堆排序示例

    1.堆排序定义 n个关键字序列Kl,K2,-,Kn称为堆,当且仅当该序列满足如下性质(简称为堆性质): (1) ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤   ) 若将此序列所存储的向量R[1..n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字. [例]关键字序列(10,15,56,25,30,70)和(70,56,30,25,15,10)分别满足堆性质(1

  • C++归并排序算法实例

    归并排序 归并排序算法是采用分治法的一个非常典型的应用.归并排序的思想是将一个数组中的数都分成单个的:对于单独的一个数,它肯定是有序的,然后,我们将这些有序的单个数在合并起来,组成一个有序的数列.这就是归并排序的思想.它的时间复杂度为O(N*logN). 代码实现 复制代码 代码如下: #include <iostream> using namespace std;   //将有二个有序数列a[first...mid]和a[mid...last]合并. void mergearray(int

  • C++堆排序算法的实现方法

    本文实例讲述了C++实现堆排序算法的方法,相信对于大家学习数据结构与算法会起到一定的帮助作用.具体内容如下: 首先,由于堆排序算法说起来比较长,所以在这里单独讲一下.堆排序是一种树形选择排序方法,它的特点是:在排序过程中,将L[n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲节点和孩子节点之间的内在关系,在当前无序区中选择关键字最大(或最小)的元素. 一.堆的定义 堆的定义如下:n个关键字序列L[n]成为堆,当且仅当该序列满足: ①L(i) <= L(2i)且L(i) <= L(2

  • C++实现各种排序算法类汇总

    C++可实现各种排序算法类,比如直接插入排序.折半插入排序.Shell排序.归并排序.简单选择排序.基数排序.对data数组中的元素进行希尔排序.冒泡排序.递归实现.堆排序.用数组实现的基数排序等. 具体代码如下: #ifndef SORT_H #define SORT_H #include <iostream> #include <queue> using namespace std; // 1.直接插入排序 template<class ElemType> void

  • PHP排序算法类实例

    本文实例讲述了PHP排序算法类.分享给大家供大家参考.具体如下: 四种排序算法的PHP实现: 1) 插入排序(Insertion Sort)的基本思想是: 每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的子文件中的适当位置,直到全部记录插入完成为止. 2) 选择排序(Selection Sort)的基本思想是: 每一趟从待排序的记录中选出关键字最小的记录,顺序放在已排好序的子文件的最后,直到全部记录排序完毕. 3) 冒泡排序的基本思想是: 两两比较待排序记录的关键字,发现两个记录的次

  • php实现的常见排序算法汇总

    本文汇总了常见的php排序算法,在进行算法设计的时候有不错的借鉴价值.现分享给大家供参考之用.具体如下: 一.插入排序 用文字简单的描述,比如说$arr = array(4,2,4,6,3,6,1,7,9); 这样的一组数字进行顺序排序: 那么,首先,拿数组的第二个元素和第一元素比较,假如第一个元素大于第二元素,那么就让两者位置互换,接下来,拿数组的第三个元素,分别和第二个,第一个元素比较,假如第三个元素小,那么就互换.依次类推.这就是插入排序,它的时间频度是:1+2+...+(n-1)=(n^

  • Java各种排序算法汇总(冒泡,选择,归并,希尔及堆排序等)

    本文实例汇总了Java各种排序算法.分享给大家供大家参考,具体如下: 1. 冒泡排序: public class SortTest { public static void main(String[] args) { int[] a = {345,7,32,5,4,-1,3,12,23,110,45645,321,456,78,-1,78,78,32,444,345}; show(a); bubbleSort(a); show(a); } private static void bubbleSo

  • 5种java排序算法汇总工具类

    工具类简单明了地总结了java的快速排序,希尔排序,插入排序,堆排序,归并排序五种排序算法,代码中并没有对这几种排序算法的一个说明,关于思想部分希望在自行查阅相关说明,这里只是对这几种算法进行一个概括,以供大家使用. public class Sort { public static <AnyType extends Comparable<? super AnyType>> void insertionSort(AnyType[] a) { insertionSort(a, 0,

  • PHP版本常用的排序算法汇总

    //1.冒泡排序 function bubble_sort($arr){ $n = count($arr); for($i=0;$i<$n-1;$i++){ for($j=$i+1;;$j<$n-$i;$j++){ if($arr[$j]<$arr[$i]){ $temp = $arr[$i]; $arr[$i] = $arr[$j]; $arr[$j] = $temp; } } } } //2.归并排序 //merge函数将指定的两个有序数组(arr1arr2,)合并并且排序 //我们

  • C/C++实现八大排序算法汇总

    概述排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存. 我们这里说说八大排序就是内部排序. 当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序.堆排序或归并排序. 快速排序:是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短: 1. 插入排序-直接插入排序(Straight Insertion Sort) 基本思想: 将一个记录插入到已

  • 基于C++实现的各种内部排序算法汇总

    提起排序算法相信大家都不陌生,或许很多人已经把它们记得滚瓜烂熟,甚至随时可以写出来.是的,这些都是最基本的算法.这里就把各种内部排序算法总结归纳了一下,包括插入排序(直接插入排序,折半插入排序,希尔排序).交换排序(冒泡排序,快速排序).选择排序(简单选择排序,堆排序).2-路归并排序.(另:至于堆排序算法,前面已经有一篇文章针对堆排序的算法实现做了详细的描述) C++实现代码如下: /*******************************************************

  • PHP排序算法之希尔排序(Shell Sort)实例分析

    本文实例讲述了PHP排序算法之希尔排序(Shell Sort).分享给大家供大家参考,具体如下: 基本思想: 希尔排序是指记录按下标的一定增量分组,对每一组使用 直接插入排序 ,随着增量逐渐减少,每组包含的关键字越来越多,当增量减少至 1 时,整个序列恰好被分成一组,算法便终止. 操作步骤: 先取一个小于 n(序列记录个数) 的整数 d1 作为第一个增量,把文件的全部记录分组.所有距离为 d1 的倍数的记录放在同一个组中.先在各组内进行 直接插入排序:然后,取第二个增量 d2 < d1 重复上述

  • PHP排序算法之直接插入排序(Straight Insertion Sort)实例分析

    本文实例讲述了PHP排序算法之直接插入排序(Straight Insertion Sort).分享给大家供大家参考,具体如下: 算法引入: 在这里我们依然使用<大话数据结构>里面的一个例子: 扑克牌是我们几乎每个人都玩过的游戏.平时我们开始的时候一般都是一个人发牌,其他人都是一边摸牌,一边理牌,假如你摸上的第一张牌是 5,第二张牌是 3,自然而然的我们把 3 插到 5 的前面:第三张牌是 4,查到 3 和 5 的中间:第四张牌是 6,放到 5 的后面:第五张牌是 2,插到 3 的前面:--.最

随机推荐