根据DataFrame某一列的值来选择具体的某一行方法
原始数据的DF:
此时,我要选择列名isInfected为“手足口病”的样本行:
总结:选择DataFrame里面某一列等于某个值的所有行,用一条命令即可解决即:
df.loc[df['columnName']=='the value']
以上这篇根据DataFrame某一列的值来选择具体的某一行方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
pandas Dataframe行列读取的实例
如下所示: import matplotlib.pyplot as plt import tkinter import numpy as np import pandas as pd from pandas import Series,DataFrame data = {'a':[1,2,3], 'c':[4,5,6], 'b':[7,8,9] } frame = DataFrame(data,index=['one','two','three']) print(frame) print(fra
-
pandas系列之DataFrame 行列数据筛选实例
一.对DataFrame的认知 DataFrame的本质是行(index)列(column)索引+多列数据. 为了简化理解,我们不妨换个思路- 现实中,为了简化对一件事物的描述,我们会选择几个特征. 例如,从(性别.身高.学历.职业.爱好..)等角度去刻画一个人,这些"角度"即为"特征". 其中,不同的行表示不同的记录:列代表特征,不同记录因各个特征之间的差异而不同. DataFrame默认索引是序号(0,1,2-),可以理解成位置索引.一般我们用id标识不同记录,
-
对Python中DataFrame选择某列值为XX的行实例详解
如下所示: #-*-coding:utf8-*- import pandas as pd all_data=pd.read_csv("E:/协和问答系统/SenLiu/熵测试数据.csv") #获取某一列值为xx的行的候选列数据 print(all_data) feature_data=all_data.iloc[:,[0,-1]][all_data[all_data.T.index[0]]=='青年'] print(feature_data) 实验结果如下: "C:\Pro
-
对pandas将dataframe中某列按照条件赋值的实例讲解
在数据处理过程中,经常会出现对某列批量做某些操作,比如dataframe df要对列名为"values"做大于等于30设置为1,小于30设置为0操作,可以这样使用dataframe的apply函数来实现, 具体实现代码如下: def fun(x): if x >= 30: return 1 else: return 0 values= feature['values'].apply(lambda x: fun(x)) 具体的逻辑可以修改fun函数来实现,但是按照某些条件选择列不是
-
python中pandas.DataFrame对行与列求和及添加新行与列示例
本文介绍的是python中pandas.DataFrame对行与列求和及添加新行与列的相关资料,下面话不多说,来看看详细的介绍吧. 方法如下: 导入模块: from pandas import DataFrame import pandas as pd import numpy as np 生成DataFrame数据 df = DataFrame(np.random.randn(4, 5), columns=['A', 'B', 'C', 'D', 'E']) DataFrame数据预览: A
-
pandas.DataFrame删除/选取含有特定数值的行或列实例
1.删除/选取某列含有特殊数值的行 import pandas as pd import numpy as np a=np.array([[1,2,3],[4,5,6],[7,8,9]]) df1=pd.DataFrame(a,index=['row0','row1','row2'],columns=list('ABC')) print(df1) df2=df1.copy() #删除/选取某列含有特定数值的行 #df1=df1[df1['A'].isin([1])] #df1[df1['A'].
-
pandas 选择某几列的方法
如下所示: col_n = ['名称','收盘价','日期'] a = pd.DataFrame(df,columns = col_n) 以上这篇pandas 选择某几列的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.
-
python pandas库中DataFrame对行和列的操作实例讲解
用pandas中的DataFrame时选取行或列: import numpy as np import pandas as pd from pandas import Sereis, DataFrame ser = Series(np.arange(3.)) data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) data['w'] #选择表格中的'w'列,使用类字典属性,返回的是S
-
python pandas dataframe 行列选择,切片操作方法
SQL中的select是根据列的名称来选取:Pandas则更为灵活,不但可根据列名称选取,还可以根据列所在的position(数字,在第几行第几列,注意pandas行列的position是从0开始)选取.相关函数如下: 1)loc,基于列label,可选取特定行(根据行index): 2)iloc,基于行/列的position: 3)at,根据指定行index及列label,快速定位DataFrame的元素: 4)iat,与at类似,不同的是根据position来定位的: 5)ix,为loc与i
-
根据DataFrame某一列的值来选择具体的某一行方法
原始数据的DF: 此时,我要选择列名isInfected为"手足口病"的样本行: 总结:选择DataFrame里面某一列等于某个值的所有行,用一条命令即可解决即: df.loc[df['columnName']=='the value'] 以上这篇根据DataFrame某一列的值来选择具体的某一行方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.
-
使用Python的Dataframe取两列时间值相差一年的所有行方法
在使用Python处理数据时,经常需要对数据筛选. 这是在对时间筛选时,判断两列时间是否相差一年,如果是,则返回符合条件的所有列. data原始数据: data[map(lambda x:datetime.date(x.year-1,x.month,x.day),data['report_date'])==data['date_1y_ago']] company_id signal_code_x signal_value_x report_date signal_code_y signal_va
-
pandas DataFrame 根据多列的值做判断,生成新的列值实例
环境:Python3.6.4 + pandas 0.22 主要是DataFrame.apply函数的应用,如果设置axis参数为1则每次函数每次会取出DataFrame的一行来做处理,如果axis为1则每次取一列. 如代码所示,判断如果城市名中含有ing字段且年份为2016,则新列test值赋为1,否则为0. import numpy as np import pandas as pd data = {'city': ['Beijing', 'Shanghai', 'Guangzhou', 'S
-
thinkphp实现把数据库中的列的值存到下拉框中的方法
1. 先去数据库中查值,查询整个数据表,结果为二维数组. $project = M("project"); $cell = $project->where(array('status'=>1))->order("id desc")->select(); //var_dump($cell); $this->assign('cell',$cell); 2.前台获取遍历 <select class="test" st
-
python DataFrame获取行数、列数、索引及第几行第几列的值方法
1.df=DataFrame([{'A':'11','B':'12'},{'A':'111','B':'121'},{'A':'1111','B':'1211'}]) print df.columns.size#列数 2 print df.iloc[:,0].size#行数 3 print df.ix[[0]].index.values[0]#索引值 0 print df.ix[[0]].values[0][0]#第一行第一列的值 11 print df.ix[[1]].values[0][1]
-
pandas把dataframe转成Series,改变列中值的类型方法
使用 pd.Series把dataframe转成Series ts = pd.Series(df['Value'].values, index=df['Date']) 使用astype改变列中的值的类型,注意前面要有np df['列名'] = df['列名'].astype(np.int64) 以上这篇pandas把dataframe转成Series,改变列中值的类型方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: python panda
-
spark dataframe 将一列展开,把该列所有值都变成新列的方法
The original dataframe 需求:hour代表一天的24小时,现在要将hour列展开,每一个小时都作为一个列 实现: val pivots = beijingGeoHourPopAfterDrop.groupBy("geoHash").pivot("hour").sum("countGeoPerHour").na.fill(0) 并且统计了对应的countGeoPerHour的和,如果有些行没有这个新列对应的数据,将用null填
-
Python Pandas中根据列的值选取多行数据
Pandas中根据列的值选取多行数据 # 选取等于某些值的行记录 用 == df.loc[df['column_name'] == some_value] # 选取某列是否是某一类型的数值 用 isin df.loc[df['column_name'].isin(some_values)] # 多种条件的选取 用 & df.loc[(df['column'] == some_value) & df['other_column'].isin(some_values)] # 选取不等于某些值的
-
使用DataFrame删除行和列的实例讲解
本文通过一个csv实例文件来展示如何删除Pandas.DataFrame的行和列 数据文件名为:example.csv 内容为: date spring summer autumn winter 2000 12.2338809 16.90730113 15.69238313 14.08596223 2001 12.84748057 16.75046873 14.51406637 13.5037456 2002 13.558175 17.2033926 15.6999475 13.23365247
随机推荐
- 我的文档和QQ聊天记录备份与恢复技巧
- 线上MYSQL同步报错故障处理方法总结(必看篇)
- Oracle中检查外键是否有索引的SQL脚本分享
- 用反编译软件去迅雷广告的图文方法
- 巧改注册表 实现Windows XP自动登录
- java 中遍历取值异常(Hashtable Enumerator)解决办法
- 利用Yahoo! Search API开发自已的搜索引擎-php版
- php使用array_rand()函数从数组中随机选择一个或多个元素
- 简单介绍Python中的round()方法
- Android下拉刷新官方版
- php中一个有意思的日期逻辑处理
- 浅析Android系统中HTTPS通信的实现
- 基于JS设计12306登录页面
- JQuery动态添加Select的Option元素实现方法
- JavaScript建立一个语法高亮输入框实现思路
- CSS实现同一背景图的导航菜单
- 本地计算机无法启动Apache故障处理
- PHP 获取文件权限函数介绍
- PHP四舍五入、取整、round函数使用示例
- iOS APP签名机制原理详解