Python iter()函数用法实例分析

本文实例讲述了Python iter()函数用法。分享给大家供大家参考,具体如下:

python中的迭代器用起来非常灵巧,不仅可以迭代序列,也可以迭代表现出序列行为的对象,例如字典的键、一个文件的行,等等。

迭代器就是有一个next()方法的对象,而不是通过索引来计数。当使用一个循环机制需要下一个项时,调用迭代器的next()方法,迭代完后引发一个StopIteration异常。

但是迭代器只能向后移动、不能回到开始、再次迭代只能创建另一个新的迭代对象。

反序迭代工具:reversed()将返回一个反序访问的迭代器。python中提供的迭代模块:itertools模块

先看几个例子:

>>> l=[2,3,4]
>>> iterl=iter(l)
>>> iterl.next()
2
>>> iterl.next()
3
>>> iterl.next()
4
>>> iterl.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
>>> d={'one':1,'two':2,'three':3}
>>> d
{'three': 3, 'two': 2, 'one': 1}
>>> iterd=iter(d) #字典的迭代器会遍历字典的键(key)
>>> iterd.next()
'three'
>>> iterd.next()
'two'
>>> iterd.next()
'one'
>>> iterd.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

下面查看iter()函数的帮助信息:

>>> help(iter)
Help on built-in function iter in module __builtin__:
iter(...)
  iter(collection) -> iterator
  iter(callable, sentinel) -> iterator
  Get an iterator from an object. In the first form, the argument must
  supply its own iterator, or be a sequence.
  In the second form, the callable is called until it returns the sentinel.

iter()函数有两种用法,一种是传一个参数,一种是传两个参数。结果都是返回一个iterator对象。

所谓的iterator对象,就是有个next()方法的对象。next方法的惯例或约定(convention)是,每执行一次就返回下一个值(因此它要自己记录状态,通常是在iterator对象上记录),直到没有值的时候raiseStopIteration。

传1个参数:参数collection应是一个容器,支持迭代协议(即定义有__iter__()函数),或者支持序列访问协议(即定义有__getitem__()函数),否则会返回TypeError异常。

传2个参数:当第二个参数sentinel出现时,参数callable应是一个可调用对象(实例),即定义了__call__()方法,当枚举到的值等于哨兵时,就会抛出异常StopIteration。

>>> s='abc' #s支持序列访问协议,它有__getitem__()方法
>>> help(str.__getitem__)
Help on wrapper_descriptor:
__getitem__(...)
  x.__getitem__(y) <==> x[y]
>>> s.__getitem__(1)
'b'
>>> s[1]
'b'
>>> iters=iter(s) #iters是一个iterator对象,它有next()和__iter__()方法
>>> iters1=iters.__iter__()
>>> iters2=iter(iters)
>>> iters
<iterator object at 0x030612D0>
>>> iters1
<iterator object at 0x030612D0>
>>> iters2
<iterator object at 0x030612D0>
iters iters1  iters2 是同一个迭代器!!
>>> iters.next()
'a'
>>> iters.next()
'b'
>>> iters.next()
'c'
>>> iters.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
>>> class test: # test 类支持迭代协议,因为它定义有__iter__()函数
...   def __iter__(self):
...     print '__iter__ is called!'
...     self.result=[1,2,3]
...     return iter(self.result)
...
>>> t=test() # t支持迭代协议
>>> for i in t:  #当执行for i in t 时,实际上是调用了t.__iter__(),也就是__iter__(t),返回一个iterator对象
...   print i,
...
__iter__ is called!
1 2 3
>>> for i in t.__iter__():
        print i,
__iter__ is called!!
1 2 3
>>> for i in test.__iter__(t):
        print i,
__iter__ is called!!
1 2 3
>>> l=[1,2,3]
>>> for i in l:
...   print i,
...
1 2 3
#上述for循环实际上是这样工作的(for循环会自动调用迭代器的next()方法),如下:
>>> iterl=iter(l)
>>> while True:
...   try:
...     i=iterl.next()
...   except StopIteration:
...     break
...   print i,
...
1 2 3
>>> f=open(r'C:\Users\Administrator\Desktop\test.txt','w')
>>> f.writelines(['love python\n','hello python\n','love python\n'])
>>> f.close()
>>> f=open(r'C:\Users\Administrator\Desktop\test.txt','r')
>>> for line in f: # 文件对象生成的迭代器会自动调用readline()方法,这样循环遍历就可以访问文本文件的所有行
...   print line[:-1]
...
love python
hello python
love python

上述for循环部分功能与以下代码一致:

>>> while True:
...   line=f.readline()
...   if line!='':
...     print line[:-1]
...   else:
...     break
...
love python
hello python
love python
>>> f=open(r'C:\Users\91135\Desktop\test.txt','r')
>>> f.readlines()
['love python\n', 'hello python\n', '\n', 'love python\n']
>>> f.seek(0)
>>> f.next()
'love python\n'
>>> f.next()
'hello python\n'
>>> f.next()
'\n'
>>> f.next()
'love python\n'
>>> f.next()
Traceback (most recent call last):
 File "<pyshell#140>", line 1, in <module>
  f.next()
StopIteration
>>> f.seek(0)
>>> it1=iter(f)
>>> it2=f.__iter__()

f    iter1    iter2 三者是同一个对象!!!

>>> f
<open file 'C:\\Users\\91135\\Desktop\\test.txt', mode 'r' at 0x030E9A70>
>>> it1
<open file 'C:\\Users\\91135\\Desktop\\test.txt', mode 'r' at 0x030E9A70>
>>> it2
<open file 'C:\\Users\\91135\\Desktop\\test.txt', mode 'r' at 0x030E9A70>
>>> f.next()
'love python\n'
>>> it1.next()
'hello python\n'
>>> next(it2)
'\n'
>>> next(f)
'love python\n'
>>> next(f)
Traceback (most recent call last):
 File "<pyshell#247>", line 1, in <module>
  next(f)
StopIteration
>>> it1.next()
Traceback (most recent call last):
 File "<pyshell#248>", line 1, in <module>
  it1.next()
StopIteration
>>> it2.next()
Traceback (most recent call last):
 File "<pyshell#249>", line 1, in <module>
  it2.next()
StopIteration
iter(callable, sentinel) -> iterator

如果是传递两个参数给 iter() , 第一个参数必须是callable ,它会重复地调用第一个参数,

直到迭代器的下个值等于sentinel:即在之后的迭代之中,迭代出来sentinel就立马停止。

关于Python中,啥是可调用的,可以参考:python callable()函数

>>> class IT(object):
    def __init__(self):
        self.l=[1,2,3,4,5]
        self.i=iter(self.l)
    def __call__(self):  #定义了__call__方法的类的实例是可调用的
        item=next(self.i)
        print "__call__ is called,which would return",item
        return item
    def __iter__(self): #支持迭代协议(即定义有__iter__()函数)
        print "__iter__ is called!!"
        return iter(self.l)
>>> it=IT() #it是可调用的
>>> it1=iter(it,3) #it必须是callable的,否则无法返回callable_iterator
>>> callable(it)
True
>>> it1
<callable-iterator object at 0x0306DD90>
>>> for i in it1:
print i
__call__ is called,which would return 1
1
__call__ is called,which would return 2
2
__call__ is called,which would return 3

可以看到传入两个参数得到的it1的类型是一个callable_iterator,它每次在调用的时候,都会调用__call__函数,并且最后输出3就停止了。

>>> it2=iter(it)
__iter__ is called!!
>>> it2
<listiterator object at 0x030A1FD0>
>>> for i in it2:
print i,
1 2 3 4 5

与it1相比,it2就简单的多,it把自己类中一个容器的迭代器返回就可以了。

上面的例子只是为了介绍iter()函数传两个参数的功能而写,如果真正想写一个iterator的类,还需要定义next函数,这个函数每次返回一个值就可以实现迭代了。

>>> class Next():
        def __init__(self,data=825):
              self.data=data
        def __iter__(self):
              return self
        def next(self):
              print "next is called!!"
              if self.data>828:
                  raise StopIteration
              else:
                  self.data+=1
                  return self.data
>>> for i in Next():
print i
next is called!!
826
next is called!!
827
next is called!!
828
next is called!!
829
next is called!!
>>> for i in Next(826):
print i
next is called!!
827
next is called!!
828
next is called!!
829
next is called!!
>>>

唯一需要注意下的就是next中必须控制iterator的结束条件,不然就死循环了。

>>> it=Next()
>>> it.__iter__()
<__main__.Next instance at 0x02E75F80>
>>> Next.__iter__(it)
<__main__.Next instance at 0x02E75F80>
>>> iter(it)
<__main__.Next instance at 0x02E75F80>
>>> it
<__main__.Next instance at 0x02E75F80>
>>> it=Next()
>>> it.next()
next is called!!
826
>>> next(it)
next is called!!
827
>>> Next.next(it)
next is called!!
828
>>> next(it)
next is called!!
829
>>> it.next()
next is called!!
Traceback (most recent call last):
 File "<pyshell#68>", line 1, in <module>
  it.next()
 File "<pyshell#1>", line 9, in next
  raise StopIteration
StopIteration

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python函数使用技巧总结》、《Python数据结构与算法教程》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

您可能感兴趣的文章:

  • Python中zip()函数用法实例教程
  • python进阶教程之循环相关函数range、enumerate、zip
  • Python中的zip函数使用示例
  • Python用zip函数同时遍历多个迭代器示例详解
  • python中lambda函数 list comprehension 和 zip函数使用指南
  • 浅谈Python中的zip()与*zip()函数详解
  • Python callable()函数用法实例分析
  • Python 函数基础知识汇总
  • python 文件和路径操作函数小结
  • Python入门篇之函数
  • Python zip()函数用法实例分析
(0)

相关推荐

  • python 文件和路径操作函数小结

    1: os.listdir(path) //path为目录 功能相当于在path目录下执行dir命令,返回为list类型 print os.listdir('..') 2: os.path.walk(path,visit,arg) path :是将要遍历的目录 visit :是一个函数指针,函数圆形为: callback(arg,dir,fileList) 其中arg为为传给walk的arg , dir是path下的一个目录,fileList为dir下的文件和目录组成的list, arg:传给v

  • Python中的zip函数使用示例

    zip函数接受任意多个(包括0个和1个)序列作为参数,返回一个tuple列表.具体意思不好用文字来表述,直接看示例: 1.示例1: 复制代码 代码如下: x = [1, 2, 3] y = [4, 5, 6] z = [7, 8, 9] xyz = zip(x, y, z) print xyz 运行的结果是: [(1, 4, 7), (2, 5, 8), (3, 6, 9)] 从这个结果可以看出zip函数的基本运作方式. 2.示例2: 复制代码 代码如下: x = [1, 2, 3] y = [

  • Python 函数基础知识汇总

    一.函数基础 简单地说,一个函数就是一组Python语句的组合,它们可以在程序中运行一次或多次运行.Python中的函数在其他语言中也叫做过程或子例程,那么这些被包装起来的语句通过一个函数名称来调用. 有了函数,我们可以在很大程度上减少复制及粘贴代码的次数了(相信很多人在刚开始时都有这样的体验).我们可以把相同的代码可以提炼出来做成一个函数,在需要的地方只需要调用即可.那么,这样就提高了代码的复用率了,整体代码看起来比较简练,没有那么臃肿了. 函数在Python中是最基本的程序结构,用来最大化地

  • Python zip()函数用法实例分析

    本文实例讲述了Python zip()函数用法.分享给大家供大家参考,具体如下: 这里介绍python中zip()函数的使用: >>> help(zip) Help on built-in function zip in module __builtin__: zip(...) zip(seq1 [, seq2 [...]]) -> [(seq1[0], seq2[0] ...), (...)] Return a list of tuples, where each tuple c

  • 浅谈Python中的zip()与*zip()函数详解

    前言 1.实验环境: Python 3.6: 2.示例代码地址:下载示例: 3.本文中元素是指列表.元组.字典等集合类数据类型中的下一级项目(可能是单个元素或嵌套列表). zip(*iterables)函数详解 zip()函数的定义 从参数中的多个迭代器取元素组合成一个新的迭代器: 返回: 返回一个zip对象,其内部元素为元组:可以转化为列表或元组: 传入参数:元组.列表.字典等迭代器. zip()函数的用法 当zip()函数中只有一个参数时 zip(iterable)从iterable中依次取

  • Python callable()函数用法实例分析

    本文实例讲述了Python callable()函数用法.分享给大家供大家参考,具体如下: python中的内建函数callable( ) ,可以检查一个对象是否是可调用的 . 对于函数, 方法, lambda 函数式, 类, 以及实现了 _ _call_ _ 方法的类实例, 它都返回 True. >>> help(callable) Help on built-in function callable in module __builtin__: callable(...) calla

  • python中lambda函数 list comprehension 和 zip函数使用指南

    lambda 函数 Python 支持一种有趣的语法,它允许你快速定义单行的最小函数.这些叫做 lambda 的函数,是从 Lisp 借用来的,可以用在任何需要函数的地方. def f(x): return x*2,用lambda函数来替换可以写成:g = lambda x: x*2`g(3)结果是6.(lambda x: x*2)(3)`也是同样的效果. 这是一个 lambda 函数,完成同上面普通函数相同的事情.注意这里的简短的语法:在参数列表周围没有括号,而且忽略了 return 关键字

  • Python入门篇之函数

    Pythond 的函数是由一个新的语句编写,即def,def是可执行的语句--函数并不存在,直到Python运行了def后才存在. 函数是通过赋值传递的,参数通过赋值传递给函数 def语句将创建一个函数对象并将其赋值给一个变量名,def语句的一般格式如下: 复制代码 代码如下: def function_name(arg1,arg2[,...]):     statement [return value] 返回值不是必须的,如果没有return语句,则Python默认返回值None. 函数名的命

  • Python中zip()函数用法实例教程

    本文实例讲述了Python中zip()函数的定义及用法,相信对于Python初学者有一定的借鉴价值.详情如下: 一.定义: zip([iterable, ...]) zip()是Python的一个内建函数,它接受一系列可迭代的对象作为参数,将对象中对应的元素打包成一个个tuple(元组),然后返回由这些tuples组成的list(列表).若传入参数的长度不等,则返回list的长度和参数中长度最短的对象相同.利用*号操作符,可以将list unzip(解压). 二.用法示例: 读者看看下面的例子,

  • python进阶教程之循环相关函数range、enumerate、zip

    在"循环"一节,我们已经讨论了Python基本的循环语法.这一节,我们将接触更加灵活的循环方式. range() 在Python中,for循环后的in跟随一个序列的话,循环每次使用的序列元素,而不是序列的下标. 之前我们已经使用过range()来控制for循环.现在,我们继续开发range的功能,以实现下标对循环的控制: 复制代码 代码如下: S = 'abcdefghijk' for i in range(0,len(S),2):     print S[i] 在该例子中,我们利用l

  • Python用zip函数同时遍历多个迭代器示例详解

    前言 本文主要介绍的是Python如何使用zip函数同时遍历多个迭代器,文中的版本为Python3,zip函数是Python内置的函数.下面话不多说,来看详细的内容. 应用举例 >>> list1 = ['a', 'b', 'c', 'd'] >>> list2 = ['apple', 'boy', 'cat', 'dog'] >>> for x, y in zip(list1, list2): print(x, 'is', y) # 输出 a is

随机推荐