Python使用PDFMiner解析PDF代码实例

近期在做爬虫时有时会遇到网站只提供pdf的情况,这样就不能使用scrapy直接抓取页面内容了,只能通过解析PDF的方式处理,目前的解决方案大致只有pyPDF和PDFMiner。因为据说PDFMiner更适合文本的解析,而我需要解析的正是文本,因此最后选择使用PDFMiner(这也就意味着我对pyPDF一无所知了)。

首先说明的是解析PDF是非常蛋疼的事,即使是PDFMiner对于格式不工整的PDF解析效果也不怎么样,所以连PDFMiner的开发者都吐槽PDF is evil. 不过这些并不重要。官方文档在此:http://www.unixuser.org/~euske/python/pdfminer/index.html

一.安装:

1.首先下载源文件包 http://pypi.python.org/pypi/pdfminer/,解压,然后命令行安装即可:python setup.py install

2.安装完成后使用该命令行测试:pdf2txt.py samples/simple1.pdf,如果显示以下内容则表示安装成功:

Hello World Hello World H e l l o W o r l d H e l l o W o r l d

3.如果要使用中日韩文字则需要先编译再安装: 

# make cmap

python tools/conv_cmap.py pdfminer/cmap Adobe-CNS1 cmaprsrc/cid2code_Adobe_CNS1.txtreading 'cmaprsrc/cid2code_Adobe_CNS1.txt'...writing 'CNS1_H.py'......(this may take several minutes) 

# python setup.py install

二.使用

由于解析PDF是一件非常耗时和内存的工作,因此PDFMiner使用了一种称作lazy parsing的策略,只在需要的时候才去解析,以减少时间和内存的使用。要解析PDF至少需要两个类:PDFParser 和 PDFDocument,PDFParser 从文件中提取数据,PDFDocument保存数据。另外还需要PDFPageInterpreter去处理页面内容,PDFDevice将其转换为我们所需要的。PDFResourceManager用于保存共享内容例如字体或图片。

Figure 1. Relationships between PDFMiner classes

比较重要的是Layout,主要包括以下这些组件:

LTPage

Represents an entire page. May contain child objects like LTTextBox, LTFigure, LTImage, LTRect, LTCurve and LTLine.

LTTextBox

Represents a group of text chunks that can be contained in a rectangular area. Note that this box is created by geometric analysis and does not necessarily represents a logical boundary of the text. It contains a list of LTTextLine objects. get_text() method returns the text content.

LTTextLine

Contains a list of LTChar objects that represent a single text line. The characters are aligned either horizontaly or vertically, depending on the text's writing mode. get_text() method returns the text content.

LTChar

LTAnno

Represent an actual letter in the text as a Unicode string. Note that, while a LTChar object has actual boundaries, LTAnno objects does not, as these are "virtual" characters, inserted by a layout analyzer according to the relationship between two characters (e.g. a space).

LTFigure

Represents an area used by PDF Form objects. PDF Forms can be used to present figures or pictures by embedding yet another PDF document within a page. Note that LTFigure objects can appear recursively.

LTImage

Represents an image object. Embedded images can be in JPEG or other formats, but currently PDFMiner does not pay much attention to graphical objects.

LTLine

Represents a single straight line. Could be used for separating text or figures.

LTRect

Represents a rectangle. Could be used for framing another pictures or figures.

LTCurve

Represents a generic Bezier curve.

官方文档给了几个Demo但是都过于简略,虽然给了一个详细一些的Demo,但链接地址是旧的现在已经失效,不过最终还是找到了新的地址:http://denis.papathanasiou.org/posts/2010.08.04.post.html

这个Demo就比较详细了,源码如下:

#!/usr/bin/python

import sys
import os
from binascii import b2a_hex

###
### pdf-miner requirements
###

from pdfminer.pdfparser import PDFParser
from pdfminer.pdfdocument import PDFDocument, PDFNoOutlines
from pdfminer.pdfpage import PDFPage
from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter
from pdfminer.converter import PDFPageAggregator
from pdfminer.layout import LAParams, LTTextBox, LTTextLine, LTFigure, LTImage, LTChar

def with_pdf (pdf_doc, fn, pdf_pwd, *args):
 """Open the pdf document, and apply the function, returning the results"""
 result = None
 try:
  # open the pdf file
  fp = open(pdf_doc, 'rb')
  # create a parser object associated with the file object
  parser = PDFParser(fp)
  # create a PDFDocument object that stores the document structure
  doc = PDFDocument(parser, pdf_pwd)
  # connect the parser and document objects
  parser.set_document(doc)
  # supply the password for initialization

  if doc.is_extractable:
   # apply the function and return the result
   result = fn(doc, *args)

  # close the pdf file
  fp.close()
 except IOError:
  # the file doesn't exist or similar problem
  pass
 return result

###
### Table of Contents
### 

def _parse_toc (doc):
 """With an open PDFDocument object, get the table of contents (toc) data
 [this is a higher-order function to be passed to with_pdf()]"""
 toc = []
 try:
  outlines = doc.get_outlines()
  for (level,title,dest,a,se) in outlines:
   toc.append( (level, title) )
 except PDFNoOutlines:
  pass
 return toc

def get_toc (pdf_doc, pdf_pwd=''):
 """Return the table of contents (toc), if any, for this pdf file"""
 return with_pdf(pdf_doc, _parse_toc, pdf_pwd)

###
### Extracting Images
###

def write_file (folder, filename, filedata, flags='w'):
 """Write the file data to the folder and filename combination
 (flags: 'w' for write text, 'wb' for write binary, use 'a' instead of 'w' for append)"""
 result = False
 if os.path.isdir(folder):
  try:
   file_obj = open(os.path.join(folder, filename), flags)
   file_obj.write(filedata)
   file_obj.close()
   result = True
  except IOError:
   pass
 return result

def determine_image_type (stream_first_4_bytes):
 """Find out the image file type based on the magic number comparison of the first 4 (or 2) bytes"""
 file_type = None
 bytes_as_hex = b2a_hex(stream_first_4_bytes)
 if bytes_as_hex.startswith('ffd8'):
  file_type = '.jpeg'
 elif bytes_as_hex == '89504e47':
  file_type = '.png'
 elif bytes_as_hex == '47494638':
  file_type = '.gif'
 elif bytes_as_hex.startswith('424d'):
  file_type = '.bmp'
 return file_type

def save_image (lt_image, page_number, images_folder):
 """Try to save the image data from this LTImage object, and return the file name, if successful"""
 result = None
 if lt_image.stream:
  file_stream = lt_image.stream.get_rawdata()
  if file_stream:
   file_ext = determine_image_type(file_stream[0:4])
   if file_ext:
    file_name = ''.join([str(page_number), '_', lt_image.name, file_ext])
    if write_file(images_folder, file_name, file_stream, flags='wb'):
     result = file_name
 return result

###
### Extracting Text
###

def to_bytestring (s, enc='utf-8'):
 """Convert the given unicode string to a bytestring, using the standard encoding,
 unless it's already a bytestring"""
 if s:
  if isinstance(s, str):
   return s
  else:
   return s.encode(enc)

def update_page_text_hash (h, lt_obj, pct=0.2):
 """Use the bbox x0,x1 values within pct% to produce lists of associated text within the hash"""

 x0 = lt_obj.bbox[0]
 x1 = lt_obj.bbox[2]

 key_found = False
 for k, v in h.items():
  hash_x0 = k[0]
  if x0 >= (hash_x0 * (1.0-pct)) and (hash_x0 * (1.0+pct)) >= x0:
   hash_x1 = k[1]
   if x1 >= (hash_x1 * (1.0-pct)) and (hash_x1 * (1.0+pct)) >= x1:
    # the text inside this LT* object was positioned at the same
    # width as a prior series of text, so it belongs together
    key_found = True
    v.append(to_bytestring(lt_obj.get_text()))
    h[k] = v
 if not key_found:
  # the text, based on width, is a new series,
  # so it gets its own series (entry in the hash)
  h[(x0,x1)] = [to_bytestring(lt_obj.get_text())]

 return h

def parse_lt_objs (lt_objs, page_number, images_folder, text=[]):
 """Iterate through the list of LT* objects and capture the text or image data contained in each"""
 text_content = [] 

 page_text = {} # k=(x0, x1) of the bbox, v=list of text strings within that bbox width (physical column)
 for lt_obj in lt_objs:
  if isinstance(lt_obj, LTTextBox) or isinstance(lt_obj, LTTextLine):
   # text, so arrange is logically based on its column width
   page_text = update_page_text_hash(page_text, lt_obj)
  elif isinstance(lt_obj, LTImage):
   # an image, so save it to the designated folder, and note its place in the text
   saved_file = save_image(lt_obj, page_number, images_folder)
   if saved_file:
    # use html style <img /> tag to mark the position of the image within the text
    text_content.append('<img src="'+os.path.join(images_folder, saved_file)+'" />')
   else:
    print >> sys.stderr, "error saving image on page", page_number, lt_obj.__repr__
  elif isinstance(lt_obj, LTFigure):
   # LTFigure objects are containers for other LT* objects, so recurse through the children
   text_content.append(parse_lt_objs(lt_obj, page_number, images_folder, text_content))

 for k, v in sorted([(key,value) for (key,value) in page_text.items()]):
  # sort the page_text hash by the keys (x0,x1 values of the bbox),
  # which produces a top-down, left-to-right sequence of related columns
  text_content.append(''.join(v))

 return '\n'.join(text_content)

###
### Processing Pages
###

def _parse_pages (doc, images_folder):
 """With an open PDFDocument object, get the pages and parse each one
 [this is a higher-order function to be passed to with_pdf()]"""
 rsrcmgr = PDFResourceManager()
 laparams = LAParams()
 device = PDFPageAggregator(rsrcmgr, laparams=laparams)
 interpreter = PDFPageInterpreter(rsrcmgr, device)

 text_content = []
 for i, page in enumerate(PDFPage.create_pages(doc)):
  interpreter.process_page(page)
  # receive the LTPage object for this page
  layout = device.get_result()
  # layout is an LTPage object which may contain child objects like LTTextBox, LTFigure, LTImage, etc.
  text_content.append(parse_lt_objs(layout, (i+1), images_folder))

 return text_content

def get_pages (pdf_doc, pdf_pwd='', images_folder='/tmp'):
 """Process each of the pages in this pdf file and return a list of strings representing the text found in each page"""
 return with_pdf(pdf_doc, _parse_pages, pdf_pwd, *tuple([images_folder]))

a = open('a.txt','a')
for i in get_pages('/home/jamespei/nova.pdf'):
 a.write(i)
a.close()

这段代码重点在于第128行,可以看到PDFMiner是一种基于坐标来解析的框架,PDF中能解析的组件全都包括上下左右边缘的坐标,如x0 = lt_obj.bbox[0]就是lt_obj元素的左边缘的坐标,同理x1则为右边缘。以上代码的意思就是把所有x0且x1的坐标相差在20%以内的元素分成一组,这样就实现了从PDF文件中定向抽取内容。

----------------补充--------------------

有一个需要注意的地方,在解析有些PDF的时候会报这样的异常:pdfminer.pdfdocument.PDFEncryptionError: Unknown algorithm: param={'CF': {'StdCF': {'Length': 16, 'CFM': /AESV2, 'AuthEvent': /DocOpen}}, 'O': '\xe4\xe74\xb86/\xa8)\xa6x\xe6\xa3/U\xdf\x0fWR\x9cPh\xac\xae\x88B\x06_\xb0\x93@\x9f\x8d', 'Filter': /Standard, 'P': -1340, 'Length': 128, 'R': 4, 'U': '|UTX#f\xc9V\x18\x87z\x10\xcb\xf5{\xa7\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', 'V': 4, 'StmF': /StdCF, 'StrF': /StdCF}

从字面意思来看是因为这个PDF是一个加密的PDF,所以无法解析 ,但是如果直接打开PDF却是可以的并没有要求输密码什么的,原因是这个PDF虽然是加过密的,但密码是空,所以就出现了这样的问题。

解决这个的问题的办法是通过qpdf命令来解密文件(要确保已经安装了qpdf),要想在python中调用该命令只需使用call即可:

 from subprocess import call
call('qpdf --password=%s --decrypt %s %s' %('', file_path, new_file_path), shell=True)

其中参数file_path是要解密的PDF的路径,new_file_path是解密后的PDF文件路径,然后使用解密后的文件去做解析就OK了

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python实现简单拆分PDF文件的方法

    本文实例讲述了Python实现简单拆分PDF文件的方法.分享给大家供大家参考.具体如下: 依赖pyPdf处理PDF文件 切分pdf文件 使用方法: 1)将要切分的文件放在input_dir目录下 2)在configure.txt文件中设置要切分的份数(如要切分4份,则设置part_num=4) 3)执行程序 4)切分后的文件保存在output_dir目录下 5)运行日志写在pp_log.txt中 P.S. 本程序可以批量切割多个pdf文件 from pyPdf import PdfFileWri

  • 基于Python实现对PDF文件的OCR识别

    最近在做一个项目的时候,需要将PDF文件作为输入,从中输出文本,然后将文本存入数据库中.为此,我找寻了很久的解决方案,最终才确定使用tesseract.所以不要浪费时间了,我们开始吧. 1.安装tesseract 在不同的系统中安装tesseract非常容易.为了简便,我们以Ubuntu为例. 在Ubuntu中你仅仅需要运行以下命令: 这将会安装支持3种不同语言的tesseract. 2.安装PyOCR 现在我们还需要安装tesseract的Python接口.幸运的是,有许多出色的Python接

  • Python生成pdf文件的方法

    本文实例演示了Python生成pdf文件的方法,是比较实用的功能,主要包含2个文件.具体实现方法如下: pdf.py文件如下: #!/usr/bin/python from reportlab.pdfgen import canvas def hello(): c = canvas.Canvas("helloworld.pdf") c.drawString(100,100,"Hello,World") c.showPage() c.save() hello() di

  • Python爬取读者并制作成PDF

    学了下beautifulsoup后,做个个网络爬虫,爬取读者杂志并用reportlab制作成pdf.. crawler.py 复制代码 代码如下: #!/usr/bin/env python #coding=utf-8 """     Author:         Anemone     Filename:       getmain.py     Last modified:  2015-02-19 16:47     E-mail:         anemone@82

  • python使用reportlab实现图片转换成pdf的方法

    本文实例讲述了python使用reportlab实现图片转换成pdf的方法.分享给大家供大家参考.具体实现方法如下: #!/usr/bin/env python import os import sys from reportlab.lib.pagesizes import A4, landscape from reportlab.pdfgen import canvas f = sys.argv[1] filename = ''.join(f.split('/')[-1:])[:-4] f_j

  • Python实现批量把SVG格式转成png、pdf格式的代码分享

    需要提前安装cairosvg模块,下载地址http://cairosvg.org/download/ Code: #! encoding:UTF-8 import cairosvg import os   loop = True while loop:     svgDir = raw_input("请输入SVG文件目录")     if os.path.exists(svgDir) and os.path.isdir(svgDir):         loop = False    

  • 用python 制作图片转pdf工具

    最近因为想要看漫画,无奈下载的漫画是jpg的格式,网上的转换器还没一个好用的,于是乎就打算用python自己DIY一下: 这里主要用了reportlab.开始打算随便写几行,结果为若干坑纠结了挺久,于是乎就想想干脆把代码写好点吧. 实现了以下的几项功能: 将当前文件夹下的图片保存到一个pdf中,支持选择pdf大小等 如果有需要可以遍历它下面的所有文件夹 简单的来说完全满足我将漫画转成pdf格式的需求了. 碰到了一些问题,这里记录下: 一.中文路径: 这个实在是略蛋疼,总之就是尽量都decode一

  • Python使用reportlab将目录下所有的文本文件打印成pdf的方法

    本文实例讲述了Python使用reportlab将目录下所有的文本文件打印成pdf的方法.分享给大家供大家参考.具体实现方法如下: # -*- coding: utf8 -*- #~ #---------------------------------------------------------------------- import wlab #pip install wlab import reportlab.pdfbase.ttfonts #reportlab.pdfbase.pdfm

  • 利用Python的Django框架生成PDF文件的教程

    便携文档格式 (PDF) 是由 Adobe 开发的格式,主要用于呈现可打印的文档,其中包含有 pixel-perfect 格式,嵌入字体以及2D矢量图像. You can think of a PDF document as the digital equivalent of a printed document; indeed, PDFs are often used in distributing documents for the purpose of printing them. 可以方

  • Python2.7读取PDF文件的方法示例

    本文实例讲述了Python2.7读取PDF文件的方法.分享给大家供大家参考,具体如下: 这篇文章示例代码采用的Python版本是2.7,需要下载的插件是PDFMiner,下载地址是http://www.unixuser.org/~euske/python/pdfminer/,地址里有安装方法,我就不再细说了,需要说明的是Python2只能使用PDFMiner,Python3不能使用,Python3可以使用PDFMiner3K,下载地址为https://pypi.python.org/pypi/p

  • 利用python程序生成word和PDF文档的方法

    一.程序导出word文档的方法 将web/html内容导出为world文档,再java中有很多解决方案,比如使用Jacob.Apache POI.Java2Word.iText等各种方式,以及使用freemarker这样的模板引擎这样的方式.php中也有一些相应的方法,但在python中将web/html内容生成world文档的方法是很少的.其中最不好解决的就是如何将使用js代码异步获取填充的数据,图片导出到word文档中. 1. unoconv 功能: 1.支持将本地html文档转换为docx

  • Python实现将DOC文档转换为PDF的方法

    本文实例讲述了Python实现将DOC文档转换为PDF的方法.分享给大家供大家参考.具体实现方法如下: import sys, os from win32com.client import Dispatch, constants, gencache def usage(): sys.stderr.write ("doc2pdf.py input [output]") sys.exit(2) def doc2pdf(input, output): w = Dispatch("W

  • python将html转成PDF的实现代码(包含中文)

    前提: 安装xhtml2pdf https://pypi.python.org/pypi/xhtml2pdf/下载字体:微软雅黑:给个地址:http://www.jb51.net/fonts/8481.html 待转换的文件:1.htm 复制代码 代码如下: <meta charset="utf8"/><style type='text/css'>@font-face {         font-family: "code2000";   

随机推荐