Python pandas处理缺失值方法详解(dropna、drop、fillna)

目录
  • 面对缺失值三种处理方法:
  • 对于option1:
  • 对于option 2:
  • 对于option3
  • 总结

面对缺失值三种处理方法:

  • option 1: 去掉含有缺失值的样本(行)
  • option 2:将含有缺失值的列(特征向量)去掉
  • option 3:将缺失值用某些值填充(0,平均值,中值等)

对于dropna和fillna,dataframe和series都有,在这主要讲datafame的

对于option1:

使用DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

参数说明:

  • axis:

    • axis=0: 删除包含缺失值的行
    • axis=1: 删除包含缺失值的列
  • how: 与axis配合使用
    • how=‘any’ :只要有缺失值出现,就删除该行货列
    • how=‘all’: 所有的值都缺失,才删除行或列
  • thresh: axis中至少有thresh个非缺失值,否则删除
  • 比如 axis=0,thresh=10:标识如果该行中非缺失值的数量小于10,将删除改行
  • subset: list
  • 在哪些列中查看是否有缺失值
  • inplace: 是否在原数据上操作。如果为真,返回None否则返回新的copy,去掉了缺失值

建议在使用时将全部的缺省参数都写上,便于快速理解

examples:

 	   	      df = pd.DataFrame(
                                        {"name": ['Alfred', 'Batman', 'Catwoman'],
                                          "toy": [np.nan, 'Batmobile', 'Bullwhip'],
                                         "born": [pd.NaT, pd.Timestamp("1940-04-25")
                                                        pd.NaT]})
 			>>> df
 			       name        toy       born
 			0    Alfred        NaN        NaT
 			1    Batman  Batmobile 1940-04-25
 			2  Catwoman   Bullwhip        NaT

 			# Drop the rows where at least one element is missing.
 			>>> df.dropna()
 			     name        toy       born
 			1  Batman  Batmobile 1940-04-25

 			# Drop the columns where at least one element is missing.
 			>>> df.dropna(axis='columns')
 			       name
 			0    Alfred
 			1    Batman
 			2  Catwoman

 			# Drop the rows where all elements are missing.
 			>>> df.dropna(how='all')
 			       name        toy       born
 			0    Alfred        NaN        NaT
 			1    Batman  Batmobile 1940-04-25
 			2  Catwoman   Bullwhip        NaT

 			# Keep only the rows with at least 2 non-NA values.
 			>>> df.dropna(thresh=2)
 			       name        toy       born
 			1    Batman  Batmobile 1940-04-25
 			2  Catwoman   Bullwhip        NaT

 			# Define in which columns to look for missing values.
 			>>> df.dropna(subset=['name', 'born'])
 			       name        toy       born
 			1    Batman  Batmobile 1940-04-25

 			# Keep the DataFrame with valid entries in the same variable.
 			>>> df.dropna(inplace=True)
 			>>> df
 			     name        toy       born
 			1  Batman  Batmobile 1940-04-25

对于option 2:

可以使用dropna 或者drop函数
DataFrame.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')

  • labels: 要删除行或列的列表
  • axis: 0 行 ;1 列
	df = pd.DataFrame(np.arange(12).reshape(3,4),
	                  columns=['A', 'B', 'C', 'D'])

	>>>df
	   	   A  B   C   D
		0  0  1   2   3
		1  4  5   6   7
		2  8  9  10  11

	# 删除列
	>>> df.drop(['B', 'C'], axis=1)
	   A   D
	0  0   3
	1  4   7
	2  8  11
	>>> df.drop(columns=['B', 'C'])
	   A   D
	0  0   3
	1  4   7
	2  8  11

	# 删除行(索引)
	>>> df.drop([0, 1])
	   A  B   C   D
	2  8  9  10  11

对于option3

使用DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)

  • value: scalar, dict, Series, or DataFrame
  • dict 可以指定每一行或列用什么值填充
  • method: {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None
  • 在列上操作
    • ffill / pad: 使用前一个值来填充缺失值
    • backfill / bfill :使用后一个值来填充缺失值
  • limit 填充的缺失值个数限制。应该不怎么用
f = pd.DataFrame([[np.nan, 2, np.nan, 0],
                   [3, 4, np.nan, 1],
                   [np.nan, np.nan, np.nan, 5],
                   [np.nan, 3, np.nan, 4]],
                   columns=list('ABCD'))
 >>> df
     A    B   C  D
0  NaN  2.0 NaN  0
1  3.0  4.0 NaN  1
2  NaN  NaN NaN  5
3  NaN  3.0 NaN  4

# 使用0代替所有的缺失值
>>> df.fillna(0)
    A   B   C   D
0   0.0 2.0 0.0 0
1   3.0 4.0 0.0 1
2   0.0 0.0 0.0 5
3   0.0 3.0 0.0 4

# 使用后边或前边的值填充缺失值
>>> df.fillna(method='ffill')
    A   B   C   D
0   NaN 2.0 NaN 0
1   3.0 4.0 NaN 1
2   3.0 4.0 NaN 5
3   3.0 3.0 NaN 4

>>>df.fillna(method='bfill')
     A	B	C	D
0	3.0	2.0	NaN	0
1	3.0	4.0	NaN	1
2	NaN	3.0	NaN	5
3	NaN	3.0	NaN	4

# Replace all NaN elements in column ‘A', ‘B', ‘C', and ‘D', with 0, 1, 2, and 3 respectively.
# 每一列使用不同的缺失值
>>> values = {'A': 0, 'B': 1, 'C': 2, 'D': 3}
>>> df.fillna(value=values)
    A   B   C   D
0   0.0 2.0 2.0 0
1   3.0 4.0 2.0 1
2   0.0 1.0 2.0 5
3   0.0 3.0 2.0 4

#只替换第一个缺失值
 >>>df.fillna(value=values, limit=1)
    A   B   C   D
0   0.0 2.0 2.0 0
1   3.0 4.0 NaN 1
2   NaN 1.0 NaN 5
3   NaN 3.0 NaN 4

房价分析:

在此问题中,只有bedroom一列有缺失值,按照此三种方法处理代码为:

# option 1 将含有缺失值的行去掉
housing.dropna(subset=["total_bedrooms"])  

# option 2 将"total_bedrooms"这一列从数据中去掉
housing.drop("total_bedrooms", axis=1)  

 # option 3 使用"total_bedrooms"的中值填充缺失值
median = housing["total_bedrooms"].median()
housing["total_bedrooms"].fillna(median) 

sklearn提供了处理缺失值的 Imputer类,具体的使用教程在这:https://www.jb51.net/article/259441.htm

总结

到此这篇关于Python pandas处理缺失值(dropna、drop、fillna)的文章就介绍到这了,更多相关pandas处理缺失值内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Pandas缺失值2种处理方式代码实例

    处理方式: 存在缺失值nan,并且是np.nan: 删除存在缺失值的:dropna(axis='rows') 替换缺失值:fillna(df[].mean(), inplace=True) 不是缺失值nan,有默认标记的 1.存在缺失值nan,并且是np.nan # 判断数据是否为NaN # pd.isnull(df),pd.notnull(df),pd.isna(df) # 读取数据 movie = pd.read_csv("./date/IMDB-Movie-Data.csv")

  • Python Pandas知识点之缺失值处理详解

    前言 数据处理过程中,经常会遇到数据有缺失值的情况,本文介绍如何用Pandas处理数据中的缺失值. 一.什么是缺失值 对数据而言,缺失值分为两种,一种是Pandas中的空值,另一种是自定义的缺失值. 1. Pandas中的空值有三个:np.nan (Not a Number) . None 和 pd.NaT(时间格式的空值,注意大小写不能错),这三个值可以用Pandas中的函数isnull(),notnull(),isna()进行判断. isnull()和notnull()的结果互为取反,isn

  • python解决pandas处理缺失值为空字符串的问题

    踩坑记录: 用pandas来做csv的缺失值处理时候发现奇怪BUG,就是excel打开csv文件,明明有的格子没有任何东西,当然,我就想到用pandas的dropna()或者fillna()来处理缺失值. 但是pandas读取csv文件后发现那个空的地方isnull()竟然是false,就是说那个地方有东西... 后来经过排查发现看似什么都没有的地方有空字符串,故pandas认为那儿不是缺失值,所以就不能用dropna()或者fillna()来处理. 解决思路:先用正则将空格匹配出来,然后全部替

  • pandas中read_csv的缺失值处理方式

    今天遇到的问题是,要将一份csv数据读入dataframe,但某些列中含有NA值.对于这些列来说,NA应该作为一个有意义的level,而不是缺失值,但read_csv函数会自动将类似的缺失值理解为缺失值并变为NaN. 看pandas文档中read_csv函数中这两个参数的描述,默认会将'-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A N/A','#N/A', 'N/A', 'NA', '#NA', 'NULL', 'NaN', '-NaN', '

  • pandas如何处理缺失值

    在实际应用中对于数据进行分析的时候,经常能看见缺失值,下面来介绍一下如何利用pandas来处理缺失值.常见的缺失值处理方式有,过滤.填充. 一.缺失值的判断 pandas使用浮点值NaN(Not a Number)表示浮点数和非浮点数组中的缺失值,同时python内置None值也会被当作是缺失值. a.Series的缺失值判断 s = Series(["a","b",np.nan,"c",None]) print(s) ''' 0 a 1 b 2

  • 简单了解Pandas缺失值处理方法

    这篇文章主要介绍了简单了解Pandas缺失值处理方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 判断数据是否为NaN: pd.isnull(df), pd.notnull(df) 判断缺失值是否存在 np.all(pd.notnull(data)) # 返回false代表有空值 np.any(pd.isnull(data)) #返回true代表有空值 处理方式: 存在缺失值nan,并且是np.nan: 1.删除缺失值:dropna(axis

  • Python Pandas对缺失值的处理方法

    Pandas使用这些函数处理缺失值: isnull和notnull:检测是否是空值,可用于df和series dropna:丢弃.删除缺失值 axis : 删除行还是列,{0 or 'index', 1 or 'columns'}, default 0 how : 如果等于any则任何值为空都删除,如果等于all则所有值都为空才删除 inplace : 如果为True则修改当前df,否则返回新的df fillna:填充空值 value:用于填充的值,可以是单个值,或者字典(key是列名,valu

  • pandas 缺失值与空值处理的实现方法

    1.相关函数 df.dropna() df.fillna() df.isnull() df.isna() 2.相关概念 空值:在pandas中的空值是"" 缺失值:在dataframe中为nan或者naT(缺失时间),在series中为none或者nan即可 3.函数具体解释 DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False) 函数作用:删除含有空值的行或列 axis:维度,axis=

  • Python pandas处理缺失值方法详解(dropna、drop、fillna)

    目录 面对缺失值三种处理方法: 对于option1: 对于option 2: 对于option3 总结 面对缺失值三种处理方法: option 1: 去掉含有缺失值的样本(行) option 2:将含有缺失值的列(特征向量)去掉 option 3:将缺失值用某些值填充(0,平均值,中值等) 对于dropna和fillna,dataframe和series都有,在这主要讲datafame的 对于option1: 使用DataFrame.dropna(axis=0, how='any', thres

  • Python数据分析的八种处理缺失值方法详解

    目录 1. 删除有缺失值的行或列 2. 删除只有缺失值的行或列 3. 根据阈值删除行或列 4. 基于特定的列子集删除 5. 填充一个常数值 6. 填充聚合值 7. 替换为上一个或下一个值 8. 使用另一个数据框填充 总结 技术交流 在本文中,我们将介绍 8 种不同的方法来解决缺失值问题,哪种方法最适合特定情况取决于数据和任务.欢迎收藏学习,喜欢点赞支持,技术交流可以文末加群,尽情畅聊. 让我们首先创建一个示例数据框并向其中添加一些缺失值. 我们有一个 10 行 6 列的数据框. 下一步是添加缺失

  • Python pandas 列转行操作详解(类似hive中explode方法)

    最近在工作上用到Python的pandas库来处理excel文件,遇到列转行的问题.找了一番资料后成功了,记录一下. 1. 如果需要爆炸的只有一列: df=pd.DataFrame({'A':[1,2],'B':[[1,2],[1,2]]}) df Out[1]: A B 0 1 [1, 2] 1 2 [1, 2] 如果要爆炸B这一列,可以直接用explode方法(前提是你的pandas的版本要高于或等于0.25) df.explode('B') A B 0 1 1 1 1 2 2 2 1 3

  • Python Pandas数据处理高频操作详解

    目录 引入依赖 算法相关依赖 获取数据 生成df 重命名列 增加列 缺失值处理 独热编码 替换值 删除列 数据筛选 差值计算 数据修改 时间格式转换 设置索引列 折线图 散点图 柱状图 热力图 66个最常用的pandas数据分析函数 从各种不同的来源和格式导入数据 导出数据 创建测试对象 查看.检查数据 数据选取 数据清理 筛选,排序和分组依据 数据合并 数据统计 16个函数,用于数据清洗 1.cat函数 2.contains 3.startswith/endswith 4.count 5.ge

  • pandas 空数据处理方法详解

    这篇文章主要介绍了pandas 空数据处理方法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 方法一:直接删除 1.查看行或列是否有空格(以下的df为DataFrame类型,axis=0,代表列,axis=1代表行,以下的返回值都是行或列索引加上布尔值) isnull方法 查看行:df.isnull().any(axis=1) 查看列:df.isnull().any(axis=0) notnull方法: 查看行:df.notnull().a

  • Python Pandas 中的数据结构详解

    目录 1.Series 1.1通过列表创建Series 1.2通过字典创建Series 2.DataFrame 3.索引对象 4.查看DataFrame的常用属性 前言: Pandas有三种数据结构:Series.DataFrame和Panel.Series类似于数组:DataFrame类似于表格:Panel可视为Excel的多表单Sheet 1.Series Series是一种一维数组对象,包含一个值序列,并且包含数据标签,称为索引(index),通过索引来访问数组中的数据. 1.1通过列表创

  • python生成式的send()方法(详解)

    随便在网上找了找,感觉都是讲半天讲不清楚,这里写一下. def generator(): while True: receive=yield 1 print('extra'+str(receive)) g=generator() print(next(g)) print(g.send(111)) print(next(g)) 输出: 1 extra111 1 extraNone 1 为什么会这样呢,点进send就能看到一句话 send:Resumes the generator and "sen

  • Python中格式化format()方法详解

     Python中格式化format()方法详解 Python中格式化输出字符串使用format()函数, 字符串即类, 可以使用方法; Python是完全面向对象的语言, 任何东西都是对象; 字符串的参数使用{NUM}进行表示,0, 表示第一个参数,1, 表示第二个参数, 以后顺次递加; 使用":", 指定代表元素需要的操作, 如":.3"小数点三位, ":8"占8个字符空间等; 还可以添加特定的字母, 如: 'b' - 二进制. 将数字以2为基

  • 对python函数签名的方法详解

    函数签名对象,表示调用函数的方式,即定义了函数的输入和输出. 在Python中,可以使用标准库inspect的一些方法或类,来操作或创建函数签名. 获取函数签名及参数 使用标准库的signature方法,获取函数签名对象:通过函数签名的parameters属性,获取函数参数. # 注意是小写的signature from inspect import signature def foo(value): return value # 获取函数签名 foo_sig = signature(foo)

  • 把JSON数据格式转换为Python的类对象方法详解(两种方法)

    JOSN字符串转换为自定义类实例对象 有时候我们有这种需求就是把一个JSON字符串转换为一个具体的Python类的实例,比如你接收到这样一个JSON字符串如下: {"Name": "Tom", "Sex": "Male", "BloodType": "A", "Hobbies": ["篮球", "足球"]} 我需要把这个转换为具

随机推荐