python中matplotlib实现最小二乘法拟合的过程详解

前言

最小二乘法Least Square Method,做为分类回归算法的基础,有着悠久的历史(由马里·勒让德于1806年提出)。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

下面这篇文章主要跟大家介绍了关于python中matplotlib实现最小二乘法拟合的相关内容,下面话不多说,来一起看看详细的介绍:

一、最小二乘法拟合直线

生成样本点

首先,我们在直线 y = 3 + 5x 附近生成服从正态分布的随机点,作为拟合直线的样本点。

import numpy as np
import matplotlib.pyplot as plt

# 在直线 y = 3 + 5x 附近生成随机点
X = np.arange(0, 5, 0.1)
Z = [3 + 5 * x for x in X]
Y = [np.random.normal(z, 0.5) for z in Z]

plt.plot(X, Y, 'ro')
plt.show() 

样本点如图所示:

拟合直线

设 y = a0 + a1*x,我们利用最小二乘法的正则方程组来求解未知系数 a0 与 a1。

numpy 的 linalg 模块中有一个 solve 函数,它可以根据方程组的系数矩阵和方程右端构成的向量来求解未知量。

def linear_regression(x, y):
 N = len(x)
 sumx = sum(x)
 sumy = sum(y)
 sumx2 = sum(x**2)
 sumxy = sum(x*y)

 A = np.mat([[N, sumx], [sumx, sumx2]])
 b = np.array([sumy, sumxy])

 return np.linalg.solve(A, b)

a0, a1 = linear_regression(X, Y) 

绘制直线

此时,我们已经得到了拟合后的直线方程系数 a0 和 a1。接下来,我们绘制出这条直线,并与样本点做对比。

# 生成拟合直线的绘制点
_X = [0, 5]
_Y = [a0 + a1 * x for x in _X]

plt.plot(X, Y, 'ro', _X, _Y, 'b', linewidth=2)
plt.title("y = {} + {}x".format(a0, a1))
plt.show() 

拟合效果如下:

二、最小二乘法拟合曲线

生成样本点

与生成直线样本点相同,我们在曲线 y = 2 + 3x + 4x^2 附近生成服从正态分布的随机点,作为拟合曲线的样本点。

import numpy as np
import matplotlib.pyplot as plt

# y = 2 + 3x + 4x^2
X = np.arange(0, 5, 0.1)
Z = [2 + 3 * x + 4 * x ** 2 for x in X]
Y = np.array([np.random.normal(z,3) for z in Z])

plt.plot(X, Y, 'ro')
plt.show() 

样本点如图所示:

拟合曲线

设该曲线的方程为 y = a0 + a1*x + a2*x^2,同样,我们通过正则方程组来求解未知量 a0、a1 和 a2。

# 生成系数矩阵A
def gen_coefficient_matrix(X, Y):
 N = len(X)
 m = 3
 A = []
 # 计算每一个方程的系数
 for i in range(m):
  a = []
  # 计算当前方程中的每一个系数
  for j in range(m):
   a.append(sum(X ** (i+j)))
  A.append(a)
 return A

# 计算方程组的右端向量b
def gen_right_vector(X, Y):
 N = len(X)
 m = 3
 b = []
 for i in range(m):
  b.append(sum(X**i * Y))
 return b

A = gen_coefficient_matrix(X, Y)
b = gen_right_vector(X, Y)

a0, a1, a2 = np.linalg.solve(A, b) 

绘制曲线

我们根据求得的曲线方程,绘制出曲线的图像。

# 生成拟合曲线的绘制点
_X = np.arange(0, 5, 0.1)
_Y = np.array([a0 + a1*x + a2*x**2 for x in _X])

plt.plot(X, Y, 'ro', _X, _Y, 'b', linewidth=2)
plt.title("y = {} + {}x + {}$x^2$ ".format(a0, a1, a2))
plt.show() 

拟合效果如下:

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对我们的支持。

(0)

相关推荐

  • Python Matplotlib库入门指南

    Matplotlib简介 Matplotlib是一个Python工具箱,用于科学计算的数据可视化.借助它,Python可以绘制如Matlab和Octave多种多样的数据图形.最初是模仿了Matlab图形命令, 但是与Matlab是相互独立的. 通过Matplotlib中简单的接口可以快速的绘制2D图表 初试Matplotlib Matplotlib中的pyplot子库提供了和matlab类似的绘图API. 复制代码 代码如下: import matplotlib.pyplot as plt  

  • python的绘图工具matplotlib使用实例

    matplotlib是功能十分强大的绘制二维图形的Python模块,它用Python语言实现了MATLAB画图函数的易用性,同时又有非常强大的可定制性.它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图.而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中.它的文档相当完备,并且Gallery页面中有上百幅缩略图,打开之后都有源程序.因此如果你需要绘制某种类型的图,只需要在这个页面中浏览.复制.粘贴一下,基本上都能搞定! 实例代码如下: 1. 柱状图 import matp

  • Python中的Matplotlib模块入门教程

    1 关于 Matplotlib 模块 Matplotlib 是一个由 John Hunter 等开发的,用以绘制二维图形的 Python 模块.它利用了 Python 下的数值计算模块 Numeric 及 Numarray,克隆了许多 Matlab 中的函数, 用以帮助用户轻松地获得高质量的二维图形.Matplotlib 可以绘制多种形式的图形包括普通的线图,直方图,饼图,散点图以及误差线图等:可以比较方便的定制图形的各种属性比如图线的类型,颜色,粗细,字体的大小等:它能够很好地支持一部分 Te

  • Python使用matplotlib绘制动画的方法

    本文实例讲述了Python使用matplotlib绘制动画的方法.分享给大家供大家参考.具体分析如下: matplotlib从1.1.0版本以后就开始支持绘制动画 下面是几个的示例: 第一个例子使用generator,每隔两秒,就运行函数data_gen: # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation fig =

  • python绘图库Matplotlib的安装

    本文简单介绍了Python绘图库Matplotlib的安装,简介如下: matplotlib是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地 进行制图.Matplotlib的安装可以参见:官网链接 http://matplotlib.org/users/installing.html 安装总结步骤如下: windows 平台上下载.exe格式 直接安装. 1.python下载安装 下载地址:http://www.python.org/download/

  • python中matplotlib实现最小二乘法拟合的过程详解

    前言 最小二乘法Least Square Method,做为分类回归算法的基础,有着悠久的历史(由马里·勒让德于1806年提出).它通过最小化误差的平方和寻找数据的最佳函数匹配.利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小.最小二乘法还可用于曲线拟合.其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达. 下面这篇文章主要跟大家介绍了关于python中matplotlib实现最小二乘法拟合的相关内容,下面话不多说,来一起看看详细的介绍:

  • python中matplotlib的颜色以及形状实例详解

    目录 绘制折线图 绘制柱形图 簇状柱形图 堆积柱形图 散点图 附:matplotlib实现区域颜色填充 总结 绘制折线图 命令形如: # 常用 plt.plot(x, y, linewidth = '1', label = "test", color=' red ', linestyle=':', marker='|') # 所有可选参数 plt.plot(x,y,color,linestyle=,linewidth,marker,markeredgecolor,markeredgwi

  • 如何彻底解决Python中matplotlib不显示中文的问题详解(显示方框)

    目录 前言 方法一: 方法二: 总结 前言 在很长一段时间里用Python绘图,matplotlib都不能很好的显示中文,起初是认为我的pycharm里的设置问题,但是发现同样的问题在spyder里也同样的出现了,虽然有的地方可以用英文实在不行用拼音...但是在作图这里没有中文真的是太不方便了,机缘巧合下在年前终于找到问题的根源了,于是乎爱刨根问底儿的我把整个过程的解决方法分享给大家~~ 一共有两种解决方案,我强烈推荐第一种,因为更为方便,绘图时不用再写别的参数,调用一次即可,第二种方法也会写出

  • 对python中数据集划分函数StratifiedShuffleSplit的使用详解

    文章开始先讲下交叉验证,这个概念同样适用于这个划分函数 1.交叉验证(Cross-validation) 交叉验证是指在给定的建模样本中,拿出其中的大部分样本进行模型训练,生成模型,留小部分样本用刚建立的模型进行预测,并求这小部分样本的预测误差,记录它们的平方加和.这个过程一直进行,直到所有的样本都被预测了一次而且仅被预测一次,比较每组的预测误差,选取误差最小的那一组作为训练模型. 下图所示 2.StratifiedShuffleSplit函数的使用 官方文档 用法: from sklearn.

  • 对python中的pop函数和append函数详解

    pop()函数 1.描述 pop() 函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值. 语法 pop()方法语法: list.pop(obj=list[-1]) 2.参数 obj – 可选参数,要移除列表元素的对象. 3.返回值 该方法返回从列表中移除的元素对象. 4.实例 以下实例展示了 pop()函数的使用方法: #!/usr/bin/python aList = [123, 'xyz', 'zara', 'abc']; print "A List : ",

  • Python 中的pygame安装与配置教程详解

    安装软件环境及版本说明 OS: Win10 x 64 专业版 Python: 2.7 IDE: PyCharm Community 2018 1. 安装python 1)下载并安装python python官网下载需要的版本,并安装(安装过程很简单,步骤略) https://www.python.org/downloads/windows/ 这里下载的是python2.7 2)配置环境变量 如果安装python时,没有勾选添加python到环境变量PATH,则需要手动添加 3)验证是否安装+配置

  • python中前缀运算符 *和 **的用法示例详解

    这篇主要探讨 ** 和 * 前缀运算符,**在变量之前使用的*and **运算符. 一个星(*):表示接收的参数作为元组来处理 两个星(**):表示接收的参数作为字典来处理 简单示例: >>> numbers = [2, 1, 3, 4, 7] >>> more_numbers = [*numbers, 11, 18] >>> print(*more_numbers, sep=', ') 2, 1, 3, 4, 7, 11, 18 用途: 使用 * 和

  • Python中可变变量与不可变变量详解

    目录 一 .常见的变量分类 1.变量的创建 二.变量分类 1..常见的不可变变量 2.常见的可变变量 三.拷贝的差别 四.参数传递的差别 前言: C++不同于Python的显著特点,就是有指针和引用,这让我们在调用参数的时候更加清晰明朗.但Python中没有指针和引用的概念,导致很多时候参数的传递和调用的时候会产生疑问:我到底是复制了一份新的做操作还是在它指向的内存操作? 这个问题根本上和可变.不可变变量有关,我想把这个二者的区别和联系做一个总结,以更深入地理解Python内部的操作.我本身非科

  • python 中Mixin混入类的使用方法详解

    目录 前言 Mixin 与继承的区别 总结 前言 最近在看sanic的源码,发现有很多Mixin的类,大概长成这个样子 class BaseSanic(    RouteMixin,    MiddlewareMixin,    ListenerMixin,    ExceptionMixin,    SignalMixin,    metaclass=SanicMeta, ): 于是对于这种 Mixin 研究了一下,其实也没什么新的东西,Mixin 又称混入,只是一种编程思想的体现,但是在使用

  • python中函数的返回值及类型详解

    目录 1.返回值介绍 2.带有返回值的函数 3.保存函数的返回值 4.四种函数的类型 1.无参数,无返回值的函数 2.无参数,有返回值的函数 3.有参数,无返回值的函数 4.有参数,有返回值的函数 5.小结 5.在python中我们可不可以返回多个值? 1.返回值介绍 现实生活中的场景: 我给儿子10块钱,让他给我买包烟.这个例子中,10块钱是我给儿子的,就相当于调用函数时传递到参数,让儿子买烟这个事情最终的目标是,让他把烟给你带回来然后给你对么,,,此时烟就是返回值 开发中的场景: 定义了一个

随机推荐