Python线程详解

1. 线程基础

1.1. 线程状态

线程有5种状态,状态转换的过程如下图所示:

1.2. 线程同步(锁)

多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。考虑这样一种情况:一个列表里所有元素都是0,线程"set"从后向前把所有元素改成1,而线程"print"负责从前往后读取列表并打印。那么,可能线程"set"开始改的时候,线程"print"便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。

锁有两种状态——锁定和未锁定。每当一个线程比如"set"要访问共享数据时,必须先获得锁定;如果已经有别的线程比如"print"获得锁定了,那么就让线程"set"暂停,也就是同步阻塞;等到线程"print"访问完毕,释放锁以后,再让线程"set"继续。经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。

线程与锁的交互如下图所示:

1.3. 线程通信(条件变量)

然而还有另外一种尴尬的情况:列表并不是一开始就有的;而是通过线程"create"创建的。如果"set"或者"print" 在"create"还没有运行的时候就访问列表,将会出现一个异常。使用锁可以解决这个问题,但是"set"和"print"将需要一个无限循环——他们不知道"create"什么时候会运行,让"create"在运行后通知"set"和"print"显然是一个更好的解决方案。于是,引入了条件变量。

条件变量允许线程比如"set"和"print"在条件不满足的时候(列表为None时)等待,等到条件满足的时候(列表已经创建)发出一个通知,告诉"set" 和"print"条件已经有了,你们该起床干活了;然后"set"和"print"才继续运行。

线程与条件变量的交互如下图所示:

1.4. 线程运行和阻塞的状态转换
最后看看线程运行和阻塞状态的转换。

阻塞有三种情况:

同步阻塞是指处于竞争锁定的状态,线程请求锁定时将进入这个状态,一旦成功获得锁定又恢复到运行状态;
等待阻塞是指等待其他线程通知的状态,线程获得条件锁定后,调用“等待”将进入这个状态,一旦其他线程发出通知,线程将进入同步阻塞状态,再次竞争条件锁定;
而其他阻塞是指调用time.sleep()、anotherthread.join()或等待IO时的阻塞,这个状态下线程不会释放已获得的锁定。

tips: 如果能理解这些内容,接下来的主题将是非常轻松的;并且,这些内容在大部分流行的编程语言里都是一样的。(意思就是非看懂不可 >_< 嫌作者水平低找别人的教程也要看懂)

2. thread

Python通过两个标准库thread和threading提供对线程的支持。thread提供了低级别的、原始的线程以及一个简单的锁。

代码如下:

# encoding: UTF-8
import thread
import time
 
# 一个用于在线程中执行的函数
def func():
    for i in range(5):
        print 'func'
        time.sleep(1)
   
    # 结束当前线程
    # 这个方法与thread.exit_thread()等价
    thread.exit() # 当func返回时,线程同样会结束
       
# 启动一个线程,线程立即开始运行
# 这个方法与thread.start_new_thread()等价
# 第一个参数是方法,第二个参数是方法的参数
thread.start_new(func, ()) # 方法没有参数时需要传入空tuple
 
# 创建一个锁(LockType,不能直接实例化)
# 这个方法与thread.allocate_lock()等价
lock = thread.allocate()
 
# 判断锁是锁定状态还是释放状态
print lock.locked()
 
# 锁通常用于控制对共享资源的访问
count = 0
 
# 获得锁,成功获得锁定后返回True
# 可选的timeout参数不填时将一直阻塞直到获得锁定
# 否则超时后将返回False
if lock.acquire():
    count += 1
   
    # 释放锁
    lock.release()
 
# thread模块提供的线程都将在主线程结束后同时结束
time.sleep(6)

thread 模块提供的其他方法:

thread.interrupt_main(): 在其他线程中终止主线程。
thread.get_ident(): 获得一个代表当前线程的魔法数字,常用于从一个字典中获得线程相关的数据。这个数字本身没有任何含义,并且当线程结束后会被新线程复用。

thread还提供了一个ThreadLocal类用于管理线程相关的数据,名为 thread._local,threading中引用了这个类。

由于thread提供的线程功能不多,无法在主线程结束后继续运行,不提供条件变量等等原因,一般不使用thread模块,这里就不多介绍了。

3. threading

threading基于Java的线程模型设计。锁(Lock)和条件变量(Condition)在Java中是对象的基本行为(每一个对象都自带了锁和条件变量),而在Python中则是独立的对象。Python Thread提供了Java Thread的行为的子集;没有优先级、线程组,线程也不能被停止、暂停、恢复、中断。Java Thread中的部分被Python实现了的静态方法在threading中以模块方法的形式提供。

threading 模块提供的常用方法:

threading.currentThread(): 返回当前的线程变量。
threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。

threading模块提供的类:

Thread, Lock, Rlock, Condition, [Bounded]Semaphore, Event, Timer, local.

3.1. Thread

Thread是线程类,与Java类似,有两种使用方法,直接传入要运行的方法或从Thread继承并覆盖run():

代码如下:

# encoding: UTF-8
import threading
 
# 方法1:将要执行的方法作为参数传给Thread的构造方法
def func():
    print 'func() passed to Thread'
 
t = threading.Thread(target=func)
t.start()
 
# 方法2:从Thread继承,并重写run()
class MyThread(threading.Thread):
    def run(self):
        print 'MyThread extended from Thread'
 
t = MyThread()
t.start()

构造方法:

Thread(group=None, target=None, name=None, args=(), kwargs={})
group: 线程组,目前还没有实现,库引用中提示必须是None;
target: 要执行的方法;
name: 线程名;
args/kwargs: 要传入方法的参数。

实例方法:

isAlive(): 返回线程是否在运行。正在运行指启动后、终止前。
get/setName(name): 获取/设置线程名。
is/setDaemon(bool): 获取/设置是否守护线程。初始值从创建该线程的线程继承。当没有非守护线程仍在运行时,程序将终止。
start(): 启动线程。
join([timeout]): 阻塞当前上下文环境的线程,直到调用此方法的线程终止或到达指定的timeout(可选参数)。

一个使用join()的例子:

代码如下:

# encoding: UTF-8
import threading
import time
 
def context(tJoin):
    print 'in threadContext.'
    tJoin.start()
   
    # 将阻塞tContext直到threadJoin终止。
    tJoin.join()
   
    # tJoin终止后继续执行。
    print 'out threadContext.'
 
def join():
    print 'in threadJoin.'
    time.sleep(1)
    print 'out threadJoin.'
 
tJoin = threading.Thread(target=join)
tContext = threading.Thread(target=context, args=(tJoin,))
 
tContext.start()

运行结果:

代码如下:

in threadContext.
in threadJoin.
out threadJoin.
out threadContext.

3.2. Lock

Lock(指令锁)是可用的最低级的同步指令。Lock处于锁定状态时,不被特定的线程拥有。Lock包含两种状态——锁定和非锁定,以及两个基本的方法。

可以认为Lock有一个锁定池,当线程请求锁定时,将线程至于池中,直到获得锁定后出池。池中的线程处于状态图中的同步阻塞状态。

构造方法:

Lock()

实例方法:

acquire([timeout]): 使线程进入同步阻塞状态,尝试获得锁定。
release(): 释放锁。使用前线程必须已获得锁定,否则将抛出异常。

代码如下:

# encoding: UTF-8
import threading
import time
 
data = 0
lock = threading.Lock()
 
def func():
    global data
    print '%s acquire lock...' % threading.currentThread().getName()
   
    # 调用acquire([timeout])时,线程将一直阻塞,
    # 直到获得锁定或者直到timeout秒后(timeout参数可选)。
    # 返回是否获得锁。
    if lock.acquire():
        print '%s get the lock.' % threading.currentThread().getName()
        data += 1
        time.sleep(2)
        print '%s release lock...' % threading.currentThread().getName()
       
        # 调用release()将释放锁。
        lock.release()
 
t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t3 = threading.Thread(target=func)
t1.start()
t2.start()
t3.start()

3.3. RLock

RLock(可重入锁)是一个可以被同一个线程请求多次的同步指令。RLock使用了“拥有的线程”和“递归等级”的概念,处于锁定状态时,RLock被某个线程拥有。拥有RLock的线程可以再次调用acquire(),释放锁时需要调用release()相同次数。

可以认为RLock包含一个锁定池和一个初始值为0的计数器,每次成功调用 acquire()/release(),计数器将+1/-1,为0时锁处于未锁定状态。

构造方法:

RLock()

实例方法:
acquire([timeout])/release(): 跟Lock差不多。

代码如下:

# encoding: UTF-8
import threading
import time
 
rlock = threading.RLock()
 
def func():
    # 第一次请求锁定
    print '%s acquire lock...' % threading.currentThread().getName()
    if rlock.acquire():
        print '%s get the lock.' % threading.currentThread().getName()
        time.sleep(2)
       
        # 第二次请求锁定
        print '%s acquire lock again...' % threading.currentThread().getName()
        if rlock.acquire():
            print '%s get the lock.' % threading.currentThread().getName()
            time.sleep(2)
       
        # 第一次释放锁
        print '%s release lock...' % threading.currentThread().getName()
        rlock.release()
        time.sleep(2)
       
        # 第二次释放锁
        print '%s release lock...' % threading.currentThread().getName()
        rlock.release()
 
t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t3 = threading.Thread(target=func)
t1.start()
t2.start()
t3.start()

3.4. Condition

Condition(条件变量)通常与一个锁关联。需要在多个Contidion中共享一个锁时,可以传递一个Lock/RLock实例给构造方法,否则它将自己生成一个RLock实例。

可以认为,除了Lock带有的锁定池外,Condition还包含一个等待池,池中的线程处于状态图中的等待阻塞状态,直到另一个线程调用notify()/notifyAll()通知;得到通知后线程进入锁定池等待锁定。

构造方法:

Condition([lock/rlock])

实例方法:

acquire([timeout])/release(): 调用关联的锁的相应方法。
wait([timeout]): 调用这个方法将使线程进入Condition的等待池等待通知,并释放锁。使用前线程必须已获得锁定,否则将抛出异常。
notify(): 调用这个方法将从等待池挑选一个线程并通知,收到通知的线程将自动调用acquire()尝试获得锁定(进入锁定池);其他线程仍然在等待池中。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。
notifyAll(): 调用这个方法将通知等待池中所有的线程,这些线程都将进入锁定池尝试获得锁定。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。

例子是很常见的生产者/消费者模式:

代码如下:

# encoding: UTF-8
import threading
import time
 
# 商品
product = None
# 条件变量
con = threading.Condition()
 
# 生产者方法
def produce():
    global product
   
    if con.acquire():
        while True:
            if product is None:
                print 'produce...'
                product = 'anything'
               
                # 通知消费者,商品已经生产
                con.notify()
           
            # 等待通知
            con.wait()
            time.sleep(2)
 
# 消费者方法
def consume():
    global product
   
    if con.acquire():
        while True:
            if product is not None:
                print 'consume...'
                product = None
               
                # 通知生产者,商品已经没了
                con.notify()
           
            # 等待通知
            con.wait()
            time.sleep(2)
 
t1 = threading.Thread(target=produce)
t2 = threading.Thread(target=consume)
t2.start()
t1.start()

3.5. Semaphore/BoundedSemaphore

Semaphore(信号量)是计算机科学史上最古老的同步指令之一。Semaphore管理一个内置的计数器,每当调用acquire()时-1,调用release() 时+1。计数器不能小于0;当计数器为0时,acquire()将阻塞线程至同步锁定状态,直到其他线程调用release()。

基于这个特点,Semaphore经常用来同步一些有“访客上限”的对象,比如连接池。

BoundedSemaphore 与Semaphore的唯一区别在于前者将在调用release()时检查计数器的值是否超过了计数器的初始值,如果超过了将抛出一个异常。

构造方法:
Semaphore(value=1): value是计数器的初始值。

实例方法:
acquire([timeout]): 请求Semaphore。如果计数器为0,将阻塞线程至同步阻塞状态;否则将计数器-1并立即返回。
release(): 释放Semaphore,将计数器+1,如果使用BoundedSemaphore,还将进行释放次数检查。release()方法不检查线程是否已获得 Semaphore。

代码如下:

# encoding: UTF-8
import threading
import time
 
# 计数器初值为2
semaphore = threading.Semaphore(2)
 
def func():
   
    # 请求Semaphore,成功后计数器-1;计数器为0时阻塞
    print '%s acquire semaphore...' % threading.currentThread().getName()
    if semaphore.acquire():
       
        print '%s get semaphore' % threading.currentThread().getName()
        time.sleep(4)
       
        # 释放Semaphore,计数器+1
        print '%s release semaphore' % threading.currentThread().getName()
        semaphore.release()
 
t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t3 = threading.Thread(target=func)
t4 = threading.Thread(target=func)
t1.start()
t2.start()
t3.start()
t4.start()
 
time.sleep(2)
 
# 没有获得semaphore的主线程也可以调用release
# 若使用BoundedSemaphore,t4释放semaphore时将抛出异常
print 'MainThread release semaphore without acquire'
semaphore.release()

3.6. Event

Event(事件)是最简单的线程通信机制之一:一个线程通知事件,其他线程等待事件。Event内置了一个初始为False的标志,当调用set()时设为True,调用clear()时重置为 False。wait()将阻塞线程至等待阻塞状态。

Event其实就是一个简化版的 Condition。Event没有锁,无法使线程进入同步阻塞状态。

构造方法:

Event()

实例方法:
isSet(): 当内置标志为True时返回True。
set(): 将标志设为True,并通知所有处于等待阻塞状态的线程恢复运行状态。
clear(): 将标志设为False。
wait([timeout]): 如果标志为True将立即返回,否则阻塞线程至等待阻塞状态,等待其他线程调用set()。

代码如下:

# encoding: UTF-8
import threading
import time
 
event = threading.Event()
 
def func():
    # 等待事件,进入等待阻塞状态
    print '%s wait for event...' % threading.currentThread().getName()
    event.wait()
   
    # 收到事件后进入运行状态
    print '%s recv event.' % threading.currentThread().getName()
 
t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t1.start()
t2.start()
 
time.sleep(2)
 
# 发送事件通知
print 'MainThread set event.'
event.set()

3.7. Timer
Timer(定时器)是Thread的派生类,用于在指定时间后调用一个方法。

构造方法:
Timer(interval, function, args=[], kwargs={})
interval: 指定的时间
function: 要执行的方法
args/kwargs: 方法的参数

实例方法:
Timer从Thread派生,没有增加实例方法。

代码如下:

# encoding: UTF-8
import threading
 
def func():
    print 'hello timer!'
 
timer = threading.Timer(5, func)
timer.start()

3.8. local

local是一个小写字母开头的类,用于管理 thread-local(线程局部的)数据。对于同一个local,线程无法访问其他线程设置的属性;线程设置的属性不会被其他线程设置的同名属性替换。

可以把local看成是一个“线程-属性字典”的字典,local封装了从自身使用线程作为 key检索对应的属性字典、再使用属性名作为key检索属性值的细节。

代码如下:

# encoding: UTF-8
import threading
 
local = threading.local()
local.tname = 'main'
 
def func():
    local.tname = 'notmain'
    print local.tname
 
t1 = threading.Thread(target=func)
t1.start()
t1.join()
 
print local.tname

熟练掌握Thread、Lock、Condition就可以应对绝大多数需要使用线程的场合,某些情况下local也是非常有用的东西。本文的最后使用这几个类展示线程基础中提到的场景:

代码如下:

# encoding: UTF-8
import threading
 
alist = None
condition = threading.Condition()
 
def doSet():
    if condition.acquire():
        while alist is None:
            condition.wait()
        for i in range(len(alist))[::-1]:
            alist[i] = 1
        condition.release()
 
def doPrint():
    if condition.acquire():
        while alist is None:
            condition.wait()
        for i in alist:
            print i,
        print
        condition.release()
 
def doCreate():
    global alist
    if condition.acquire():
        if alist is None:
            alist = [0 for i in range(10)]
            condition.notifyAll()
        condition.release()
 
tset = threading.Thread(target=doSet,name='tset')
tprint = threading.Thread(target=doPrint,name='tprint')
tcreate = threading.Thread(target=doCreate,name='tcreate')
tset.start()
tprint.start()
tcreate.start()

全文完

(0)

相关推荐

  • 用Python实现一个简单的线程池

    线程池的概念是什么? 在面向对象编程中,创建和销毁对象是很费时间的,因为创建一个对象要获取内存资源或者其它更多资源.在Java中更是 如此,虚拟机将试图跟踪每一个对象,以便能够在对象销毁后进行垃圾回收.所以提高服务程序效率的一个手段就是尽可能减少创建和销毁对象的次数,特别是一些 很耗资源的对象创建和销毁.如何利用已有对象来服务就是一个需要解决的关键问题,其实这就是一些"池化资源"技术产生的原因. 我理解为线程池是一个存放很多线程的单位,同时还有一个对应的任务队列.整个执行过程其实就是使

  • python线程池的实现实例

    直接上代码: 复制代码 代码如下: # -*- coding: utf-8 -*- import Queue import threadingimport urllibimport urllib2import os def down(url,n):    print 'item '+str(n)+' start '    filename=urllib2.unquote(url).decode('utf8').split('/')[-1]    urllib.urlretrieve(url, f

  • 浅析Python多线程下的变量问题

    在多线程环境下,每个线程都有自己的数据.一个线程使用自己的局部变量比使用全局变量好,因为局部变量只有线程自己能看见,不会影响其他线程,而全局变量的修改必须加锁. 但是局部变量也有问题,就是在函数调用的时候,传递起来很麻烦: def process_student(name): std = Student(name) # std是局部变量,但是每个函数都要用它,因此必须传进去: do_task_1(std) do_task_2(std) def do_task_1(std): do_subtask

  • python中threading超线程用法实例分析

    本文实例讲述了python中threading超线程用法.分享给大家供大家参考.具体分析如下: threading基于Java的线程模型设计.锁(Lock)和条件变量(Condition)在Java中是对象的基本行为(每一个对象都自带了锁和条件变量),而在Python中则是独立的对象.Python Thread提供了Java Thread的行为的子集:没有优先级.线程组,线程也不能被停止.暂停.恢复.中断.Java Thread中的部分被Python实现了的静态方法在threading中以模块方

  • Python下线程之间的共享和释放示例

    最近被多线程给坑了下,没意识到类变量在多线程下是共享的,还有一个就是没意识到 内存释放问题,导致越累越大 1.python 类变量 在多线程情况 下的 是共享的 2.python 类变量 在多线程情况 下的 释放是不完全的 3.python 类变量 在多线程情况 下没释放的那部分 内存 是可以重复利用的 import threading import time class Test: cache = {} @classmethod def get_value(self, key): value

  • Python多线程和队列操作实例

    Python3,开一个线程,间隔1秒把一个递增的数字写入队列,再开一个线程,从队列中取出数字并打印到终端 复制代码 代码如下: #! /usr/bin/env python3 import time import threading import queue # 一个线程,间隔一定的时间,把一个递增的数字写入队列 # 生产者 class Producer(threading.Thread): def __init__(self, work_queue):         super().__in

  • python实现线程池的方法

    本文实例讲述了python实现线程池的方法.分享给大家供大家参考.具体如下: 原理:建立一个任务队列,然多个线程都从这个任务队列中取出任务然后执行,当然任务队列要加锁,详细请看代码 文件名:thrd_pool.py 系统环境:ubuntu linux & python2.6 import threading import time import signal import os class task_info(object): def __init__(self): self.func = No

  • Python实现线程池代码分享

    原理:建立一个任务队列,然多个线程都从这个任务队列中取出任务然后执行,当然任务队列要加锁,详细请看代码 import threading import time import signal import os class task_info(object): def __init__(self): self.func = None self.parm0 = None self.parm1 = None self.parm2 = None class task_list(object): def

  • Golang与python线程详解及简单实例

    Golang与python线程详解及简单实例 在GO中,开启15个线程,每个线程把全局变量遍历增加100000次,因此预测结果是 15*100000=1500000. var sum int var cccc int var m *sync.Mutex func Count1(i int, ch chan int) { for j := 0; j < 100000; j++ { cccc = cccc + 1 } ch <- cccc } func main() { m = new(sync.

  • Python线程详解

    1. 线程基础 1.1. 线程状态 线程有5种状态,状态转换的过程如下图所示: 1.2. 线程同步(锁) 多线程的优势在于可以同时运行多个任务(至少感觉起来是这样).但是当线程需要共享数据时,可能存在数据不同步的问题.考虑这样一种情况:一个列表里所有元素都是0,线程"set"从后向前把所有元素改成1,而线程"print"负责从前往后读取列表并打印.那么,可能线程"set"开始改的时候,线程"print"便来打印列表了,输出就成

  • python getopt详解及简单实例

     python getopt详解 函数原型: getopt.getopt(args, shortopts, longopts=[]) 参数解释: args:args为需要解析的参数列表.一般使用sys.argv[1:],这样可以过滤掉第一个参数(ps:第一个参数是脚本的名称,它不应该作为参数进行解析) shortopts:简写参数列表 longopts:长参数列表 返回值: opts:分析出的(option, value)列表对. args:不属于格式信息的剩余命令行参数列表. 源码分析 在An

  • Python注释详解

    注释用于说明代码实现的功能.采用的算法.代码的编写者以及创建和修改的时间等信息. 注释是代码的一部分,注释起到了对代码补充说明的作用. Python注释 Python单行注释以#开头,单行注释可以作为单独的一行放在被注释的代码行之上,也可以放在语句或者表达式之后. #Give you a chance to let you know me print("Give you a chance to let you know me") say_what = "this is a d

  • java 线程详解及线程与进程的区别

    java  线程详解及线程与进程的区别 1.进程与线程 每个进程都独享一块内存空间,一个应用程序可以同时启动多个进程.比如IE浏览器,打开一个Ie浏览器就相当于启动了一个进程. 线程指进程中的一个执行流程,一个进程可以包含多个线程. 每个进程都需要操作系统为其分配独立的内存空间,而同一个进程中的多个线程共享这块空间,即共享内存等资源. 每次调用java.exe的时候,操作系统都会启动一个Java虚拟机进程,当启动Java虚拟机进程时候,Java虚拟机都会创建一个主线程,该线程会从程序入口main

  • python 类详解及简单实例

    python 类详解 类 1.类是一种数据结构,可用于创建实例.(一般情况下,类封装了数据和可用于该数据的方法) 2.Python类是可调用的对象,即类对象 3.类通常在模块的顶层进行定义,以便类实例能够在类所定义的源代码文件中的任何地方被创建. 4.实例初始化 instance = ClassName(args....) 类在实例化时可以使用__init__和__del__两个特殊的方法. class ClassName(base): 'class documentation string'

  • 神经网络理论基础及Python实现详解

    一.多层前向神经网络 多层前向神经网络由三部分组成:输出层.隐藏层.输出层,每层由单元组成: 输入层由训练集的实例特征向量传入,经过连接结点的权重传入下一层,前一层的输出是下一层的输入:隐藏层的个数是任意的,输入层只有一层,输出层也只有一层: 除去输入层之外,隐藏层和输出层的层数和为n,则该神经网络称为n层神经网络,如下图为2层的神经网络: 一层中加权求和,根据非线性方程进行转化输出:理论上,如果有足够多的隐藏层和足够大的训练集,可以模拟出任何方程: 二.设计神经网络结构 使用神经网络之前,必须

  • 对YOLOv3模型调用时候的python接口详解

    需要注意的是:更改完源程序.c文件,需要对整个项目重新编译.make install,对已经生成的文件进行更新,类似于之前VS中在一个类中增加新函数重新编译封装dll,而python接口的调用主要使用的是libdarknet.so文件,其余在配置文件中的修改不必重新进行编译安装. 之前训练好的模型,在模型调用的时候,总是在 lib = CDLL("/home/*****/*******/darknet/libdarknet.so", RTLD_GLOBAL)这里读不到darknet编译

  • .dcm格式文件软件读取及python处理详解

    要处理一些.DCM格式的焊接缺陷图像,需要读取和显示.dcm格式的图像.通过搜集资料收集到一些医学影像,并通过pydicom模块查看.dcm格式文件. 若要查看dcm格式文件,可下Echo viewer 进行查看. 若用过pycharm进行处理,可选用如下的代码: # -*-coding:utf-8-*- import cv2 import numpy import dicom from matplotlib import pyplot as plt dcm = dicom.read_file(

  • 最小二乘法及其python实现详解

    最小二乘法Least Square Method,做为分类回归算法的基础,有着悠久的历史(由马里·勒让德于1806年提出).它通过最小化误差的平方和寻找数据的最佳函数匹配.利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小.最小二乘法还可用于曲线拟合.其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达. 那什么是最小二乘法呢?别着急,我们先从几个简单的概念说起. 假设我们现在有一系列的数据点 ,那么由我们给出的拟合函数h(x)得到的估计量就是

随机推荐