C/C++数据对齐详细解析

Data Alignment

关于数据对齐问题,现在多多少少有了一些接触,简单地说下自己的看法。

1、对齐的背景

大端和小端的问题有必要在这里介绍一下,计算机里面每个地址单元对应着一个字节,一个字节为8bit,对于位数大于8位的处理器来说,寄存器的宽度是大于一个字节的,例如16bit的short型变量x,在内存中的地址是0x0010,x的值为0x1122,0x11为高字节,0x22为低字节,常用的X86结构是小端模式,很多ARM,DSP都是小端模式,而KEIL C51则为大端模式。内存空间是按照byte进行划分的,理论上对任何类型的变量的访问可以从任何地址开始,但实际上访问特定变量的时候经常在特定的内存地址访问,这就需要各类型的数据按照一定的规则在空间上排列,而不是顺序排列,这就是对齐。

2、对齐的原因

不同硬件平台对存储空间的处理是有很大不同的,一些平台对某些特定类型的数据只能从某些特定地址开始存取。其他平台可能没有这种情况, 但是最常见的是如果不按照适合其平台的要求对数据存放进行对齐,会在存取效率上带来损失。比如有些平台每次读都是从偶地址开始,如果一个int型(假设为 32位)如果存放在偶地址开始的地方,那么一个读周期就可以读出,而如果存放在奇地址开始的地方,就可能会需要2个读周期,并对两次读出的结果的高低 字节进行拼凑才能得到该int数据。显然在读取效率上下降很多。这也是空间和时间的博弈。

3、对齐的实现

通常我们在写代码的时候是不需要考虑对齐的影响的,都是依赖编译器来为我们选择适合的对齐策略,我们也可以通过传递给编译器预编译指令来指定数据对齐的方法。

以struct数据结构的sizeof方法为例,环境是Mac OS X 64位内核,结构体的定义如下:

struct A {
int a;
char b;
short c;
};

struct B {
char b;
int a;
short c;
};

#pragma pack(2)
struct C {
char b;
int a;
short c;
};
#pragma pack()

#pragma pack(1)
struct D {
char b;
int a;
short c;
};
#pragma pack()

int main(int argc, char** argv)
{
printf("size of struct A : %lu \n", sizeof(struct A));
printf("size of struct B : %lu \n", sizeof(struct B));
printf("size of struct C : %lu \n", sizeof(struct C));
printf("size of struct D : %lu \n", sizeof(struct D));
return 0;
}

输出:
size of struct A : 8
size of struct B : 12
size of struct C : 8
size of struct D : 7

结构体中包含了4字节长度的int一个,1字节长度的char一个以及2字节长度的short一个。加起来所用到的内存空间为7个字节,但实际使用sizeof时发现,结构体之间占用的内存是不一样的。

关于对齐有几个需要说明的:
(1)数据类型自身的对齐值:基本数据类型的自身对齐值,char类型为1,short类型为2,int,float,double为4;

(2)指定对齐值:#pragma pack(value)时的指定对齐值value;

(3)结构体或者类的自身对齐值:其成员中自身对齐值最大的那个值;

(4)数据成员、结构体和类的有效对齐值:自身对齐值或指定对齐值中较小值。

对于一个具体的数据结构的成员和其自身的对齐方式,有效对齐值N将最终决定数据存放地址的方式的值,对齐在N上就意味着数据“存放的起始地址%N=0”,

下面来针对上面的例子进行分析:
struct B {
char b;
int a;
short c;
};

假设B从地址空间0x0000开始,默认的对齐值是4(这里有个问题想请教大家,我的是64位的内核,但是测试我的默认对齐方式为4),第一个成员变量b的自身对齐值为1,比默认值小所以有效对齐值为1,存放地址0x0000%1=0,第二个成员变量a,自身对齐值为4,存放的起始地址为0x0004到0x0007这个4个连续的字节空间中,0x0004%4=0,第三个变量c,自身对齐值为2,存放的起始地址为0x0008到0x0009,地址同样符合要求。结构体B的自身对齐值为变量中的最大对齐值(b)4,(10+2)%4=0,所以0x000A到0x000B也是被结构体B占用。
内存中的示意图:
b - - -
a a a a
c c

#pragma pack(2)
struct C {
char b;
int a;
short c;
};
#pragma pack()

第一个变量b的自身对齐值为1,指定对齐值为2,有效对齐值为1,b存放在0x0000,a的自身对齐值为4,大于指定对齐值,所有有效的对齐值为2,a占有的字节为0x0002、0x0003、0x0004、0x0005四个连续字节中,c的自身对齐值为2,所以有效对齐值也是2,顺序存放在0x0006、0x0007。结构体C的自身对齐值为4,所以有效对齐值为2,8%2=0。
内存中的示意图:
b -
a a
a a
c c

其实想到内存中的示意图一切都会简单很多。

(0)

相关推荐

  • C/C++数据对齐详细解析

    Data Alignment 关于数据对齐问题,现在多多少少有了一些接触,简单地说下自己的看法. 1.对齐的背景 大端和小端的问题有必要在这里介绍一下,计算机里面每个地址单元对应着一个字节,一个字节为8bit,对于位数大于8位的处理器来说,寄存器的宽度是大于一个字节的,例如16bit的short型变量x,在内存中的地址是0x0010,x的值为0x1122,0x11为高字节,0x22为低字节,常用的X86结构是小端模式,很多ARM,DSP都是小端模式,而KEIL C51则为大端模式.内存空间是按照

  • ajax动态加载json数据并详细解析

    效果图 jsp代码 <form > 姓名:<input name="name" type="text"/> 年龄:<input name="age" type="text"/> <input type="button" class="get" value="get提交"/> <input type="bu

  • c语言 数据存储与原码 反码 补码详细解析

    目录 前言 1.数据的类型介绍 1.1整形家族 2.整形在数据内存中的存储 2.1 原码 反码和补码(三种整型数的表示方法) 2.2大小端字节序序的介绍 2.3 练习 3.浮点型在内存中的存储 3.1 先举一个例子 3.2 浮点数储存的规则 前言 学习本章你会了解: 1.数据类型详细介绍 2.整形在内存中的存储:以及了解原码.补码.反码 3.大小端字节序的介绍和判断 4.浮点型在内存中的存储解析 1.数据的类型介绍 在学习数据储存之前,让我们先认识一下数据类型.以下这些数据类型是我们初学c语言时

  • SpringBoot使用自定义注解实现数据脱敏过程详细解析

    目录 前言 一.引入hutool工具类 二.定义常用需要脱敏的数据类型的枚举 三.定义脱敏方式枚举 四.自定义脱敏的注解 五.自定义Jackson的序列化方式 六.使用 七.脱敏效果 前言 对于某些接口返回的信息,涉及到敏感数据的必须进行脱敏操作,例如银行卡号.身份证号.手机号等,脱敏方式有多种方式.可以修改SQL语句,也可以写硬代码,也可以修改JSON序列化,这里介绍通过修改Jackson序列化方式实现数据脱敏. 一.引入hutool工具类 maven: <dependency> <g

  • Vue子组件与父组件详细解析

    目录 一.父组件和子组件 二.模板分离写法 1.template标签 2.text/x-template 三.父子组件通信-父传子 1.Prop 类型 四.父子组件通信子传父 1.vm.$emit( eventName, [-args] ) 五.父子组件通信-结合双向绑定案例 1.基本模板代码 2.增加双向绑定 3.反向绑定 六.组件访问父访问子 一.父组件和子组件 我们经常分不清什么是父组件,什么是子组件.现在来简单总结下:我们将某段代码封装成一个组件,而这个组件又在另一个组件中引入,而引入该

  • Mysql中复制详细解析

    1.mysql复制概念 指将主数据库的DDL和DML操作通过二进制日志传到复制服务器上,然后在复制服务器上将这些日志文件重新执行,从而使复制服务器和主服务器的数据保持同步.复制过程中一个服务器充当主服务器(master),而一个或多个其它服务器充当从服务器(slaves).主服务器将更新重新写入二进制日志文件,并维护文件的一个索引以跟踪日志循环.这些日志可以记录发送到从服务器的更新.当一个从服务器连接主服务器时,它通知主服务器.从服务器在日志中读取的最后一次成功更新的位置.从服务器接受从那时起发

  • 远程数据库的表超过20个索引的影响详细解析

    昨天同事参加了一个研讨会,有提到一个案例.一个通过dblink查询远端数据库,原来查询很快,但是远端数据库增加了一个索引之后,查询一下子变慢了. 经过分析,发现那个通过dblink的查询语句,查询远端数据库的时候,是走索引的,但是远端数据库添加索引之后,如果索引的个数超过20个,就会忽略第一个建立的索引,如果查询语句恰好用到了第一个建立的索引,被忽略之后,只能走Full Table Scan了. 听了这个案例,我查了一下,在oracle官方文档中,关于Managing a Distributed

  • 对MySQL配置参数 my.ini/my.cnf的详细解析

    以下的文章主要描述的是对MySQL配置参数 my.ini/my.cnf的详细解析,我们主要是以实例演示的方式来对MySQL配置参数 my.ini/my.cnf的实际操作步骤进行说明,以下就是相关内容的具体描述. 1.获取当前配置参数 要优化MySQL配置参数,首先要了解当前的配置参数以及运行情况.使用下列命令可以获得目前服务器使用的配置参数: 复制代码 代码如下: mysqld –verbose –help mysqladmin variables extended-status –u root

  • Mybatis中的config.xml配置文件详细解析

    经过前面的文章,我觉得对Mybatis的正题理解已经足够了,但是对Mybatis的使用,我觉得还是会有一点的模糊,就我个人而言,我觉得掌握好Mybatis框架,主要要明白三个文件,第一个就是等下要谈论的Mybatis-comfig.xml文件,还有就是**Mapper.xml,以及我们所定义的Mapper类,理解了这三个东西,然后有sql的基础,还有java的基础的话,后面不论是使用基于xml的方法,还是基于java-based Configuration的方法,都会简单的多. 废话不多说,现在

  • SpringMVC 数据校验实例解析

    这篇文章主要介绍了SpringMVC 数据校验实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一.注解方式 二.示例 Spring MVC本身没有数据校验的功能,它使用Hibernate的校验框架来完成. 1.导入pom节点 <!-- https://mvnrepository.com/artifact/org.hibernate/hibernate-validator --> <dependency> <group

随机推荐