Three.js学习之Lamber材质和Phong材质

前言

  材质(Material)是独立于物体顶点信息之外的与渲染效果相关的属性。通过设置材质可以改变物体的颜色、纹理贴图、光照模式等。

  MeshBasicMaterial:对光照无感,给几何体一种简单的颜色或显示线框。

  MeshLambertMaterial:这种材质对光照有反应,用于创建暗淡的不发光的物体。

  MeshPhongMaterial:这种材质对光照也有反应,用于创建金属类明亮的物体。

1.基本材质

  使用基本材质(BasicMaterial)的物体,渲染后物体的颜色始终为该材质的颜色,而不会由于光照产生明暗、阴影效果。如果没有指定材质的颜色,则颜色是随机的。其构造函数是:

THREE.MeshLambertMaterial(opt)

  其中,opt可以缺省,或者为包含各属性的值。如新建一个不透明度为0.75的黄色材质:

new THREE.MeshBasicMaterial({

 color: 0xffff00,

 opacity: 0.75

});

  将其应用于一个正方体(方法参见《Three.js学习之几何形状》,效果为:

源码:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>3.js测试7.1</title>
 </head>
 <body onload="init()">
 <canvas id="mainCanvas" width="400px" height="300px" ></canvas>
 </body>
 <script type="text/javascript" src="js/three.min.js"></script>
 <script type="text/javascript">
 function init() {
 var renderer = new THREE.WebGLRenderer({
 canvas: document.getElementById('mainCanvas')
 });
 renderer.setClearColor(0x000000);
 var scene = new THREE.Scene();

 // camera
 var camera = new THREE.OrthographicCamera(-5, 5, 3.75, -3.75, 0.1, 100);
 camera.position.set(25, 25, 25);
 camera.lookAt(new THREE.Vector3(0, 0, 0));
 scene.add(camera);

 // light
 var light = new THREE.PointLight(0xffffff, 1, 100);
 light.position.set(10, 15, 5);
 scene.add(light);

 var material = new THREE.MeshBasicMaterial({
 color: 0xffff00,
 opacity: 0.75
 });

 var cube = new THREE.Mesh(new THREE.CubeGeometry(5, 5, 5), material);
 scene.add(cube);

 renderer.render(scene, camera);
 }
 </script>
</html>

 BasicMaterial的几个较为常用的属性:

  · visible:是否可见,默认为true

  · side:渲染面片正面或是反面,默认为正面THREE.FrontSide,可设置为反面THREE.BackSide,或双面THREE.DoubleSide

  · wireframe:是否渲染线而非面,默认为false

  · color:十六进制RGB颜色,如红色表示为0xff0000

  · map:使用纹理贴图

  对于基本材质,即使改变场景中的光源,使用该材质的物体也始终为颜色处处相同的效果。当然,这不是很具有真实感,因此,接下来我们将介绍更为真实的光照模型:Lambert光照模型以及Phong光照模型

2.Lamber材质与Phong材质

  Lambert材质(MeshLambertMaterial)是符合Lambert光照模型的材质。Lambert光照模型的主要特点是只考虑漫反射而不考虑镜面反射的效果,因而对于金属、镜子等需要镜面反射效果的物体就不适应,对于其他大部分物体的漫反射效果都是适用的。

  其光照模型公式为:

Idiffuse = Kd * Id * cos(theta)

  其中,Idiffuse是漫反射光强,Kd是物体表面的漫反射属性,Id是光强,theta是光的入射角弧度。

  当然,对于使用Three.js的Lambert材质,不需要了解以上公式就可以直接使用。

创建一个黄色的Lambert材质的方法为:

new THREE.MeshLambertMaterial({

 color: 0xffff00

})

  在使用了光照之后,得到这样的效果:

  color是用来表现材质对散射光的反射能力,也是最常用来设置材质颜色的属性。除此之外,还可以用ambient和emissive控制材质的颜色。

  ambient表示对环境光的反射能力,只有当设置了AmbientLight后,该值才是有效的,材质对环境光的反射能力与环境光强相乘后得到材质实际表现的颜色。

  emissive是材质的自发光颜色,可以用来表现光源的颜色,并不是一种光源,而是一种不受光照影响的颜色。单独使用红色的自发光:

new THREE.MeshLambertMaterial({

 emissive: 0xff0000

})

  效果为:

  如果同时使用红色的自发光与黄色的散射光:

new THREE.MeshLambertMaterial({

 color: 0xffff00,

 emissive: 0xff0000

})

  效果为:

  球体的效果:

  总结Lamber材质的特有属性:

  ambient:设置材质的环境色,和AmbientLight光源一起使用,这个颜色会与环境光的颜色相乘。即是对光源作出反应。

  emissive:设置材质发射的颜色,不是一种光源,而是一种不受光照影响的颜色。默认为黑色。

  源码: 

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>3.js测试7.2</title>
 </head>
 <body onload="init()">
 <canvas id="mainCanvas" width="400px" height="300px" ></canvas>
 </body>
 <script type="text/javascript" src="js/three.min.js"></script>
 <script type="text/javascript">
 function init() {
 var renderer = new THREE.WebGLRenderer({
 canvas: document.getElementById('mainCanvas')
 });
 renderer.setClearColor(0x000000);
 var scene = new THREE.Scene();

 // camera
 var camera = new THREE.OrthographicCamera(-5, 5, 3.75, -3.75, 0.1, 100);
 camera.position.set(25, 25, 25);
 camera.lookAt(new THREE.Vector3(0, 0, 0));
 scene.add(camera);

 // light
 var light = new THREE.PointLight(0xffffff, 1, 100);
 light.position.set(10, 15, 5);
 scene.add(light);

 var material = new THREE.MeshLambertMaterial({
 color: 0xffff00,
 emissive: 0xff0000
 });

 var cube = new THREE.Mesh(new THREE.CubeGeometry(5, 5, 5), material);
 scene.add(cube);

// var sphere = new THREE.Mesh(new THREE.SphereGeometry(3, 20, 8), material);
// scene.add(sphere);

 renderer.render(scene, camera);
 }
 </script>
</html>

3.phong材质

  Phong材质(MeshPhongMaterial)是符合Phong光照模型的材质。和Lambert不同的是,Phong模型考虑了镜面反射的效果,因此对于金属、镜面的表现尤为适合。

  漫反射部分和Lambert光照模型是相同的,镜面反射部分的模型为:

Ispecular = Ks * Is * (cos(alpha)) ^ n

  其中,Ispecular是镜面反射的光强,Ks是材质表面镜面反射系数,Is是光源强度,alpha是反射光与视线的夹角,n是高光指数,越大则高光光斑越小。

  由于漫反射部分与Lambert模型是一致的,因此,如果不指定镜面反射系数,而只设定漫反射,其效果与Lambert是相同的:

new THREE.MeshPhongMaterial({

 color: 0xffff00

});

  同样地,可以指定emissive和ambient值,这里不再说明。下面就specular值指定镜面反射系数作说明。首先,我们只使用镜面反射,将高光设为红色,应用于一个球体:

var material = new THREE.MeshPhongMaterial({

 specular: 0xff0000

});

var sphere = new THREE.Mesh(new THREE.SphereGeometry(3, 20, 8), material);

  效果为:

  可以通过shininess属性控制光照模型中的n值,当shininess值越大时,高光的光斑越小,默认值为30。我们将其设置为1000时:

new THREE.MeshPhongMaterial({

 specular: 0xff0000,

 shininess: 1000

});

  效果为:

  使用黄色的镜面光,红色的散射光:

material = new THREE.MeshPhongMaterial({

 color: 0xff0000,

 specular: 0xffff00,

 shininess: 100

});

  总结Phong材质的特有属性:

  ambient:设置材质的环境色,和AmbientLight光源一起使用,这个颜色会与环境光的颜色相乘。即是对光源作出反应。

  emissive:设置材质发射的颜色,不是一种光源,而是一种不受光照影响的颜色。默认为黑色

  specular:指定该材质的光亮程度及其高光部分的颜色,如果设置成和color属性相同的颜色,则会得到另一个更加类似金属的材质,如果设置成grey灰色,则看起来像塑料

  shininess:指定高光部分的亮度,默认值为30.

  源码:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>3.js测试7.3</title>
 </head>
 <body onload="init()">
 <canvas id="mainCanvas" width="400px" height="300px" ></canvas>
 </body>
 <script type="text/javascript" src="js/three.min.js"></script>
 <script type="text/javascript">
 function init() {
 var renderer = new THREE.WebGLRenderer({
 canvas: document.getElementById('mainCanvas')
 });
 renderer.setClearColor(0x000000);
 var scene = new THREE.Scene();

 // camera
 var camera = new THREE.OrthographicCamera(-5, 5, 3.75, -3.75, 0.1, 100);
 camera.position.set(25, 25, 25);
 camera.lookAt(new THREE.Vector3(0, 0, 0));
 scene.add(camera);

 // light
 var light = new THREE.PointLight(0xffffff, 1, 200);
 light.position.set(10, 15, 25);
 scene.add(light);

 var material = new THREE.MeshPhongMaterial({
// specular: 0xff0000,
 color: 0xff0000,
 specular: 0xffff00,
 shininess: 100
 });

// var cube = new THREE.Mesh(new THREE.CubeGeometry(5, 5, 5), material);
// scene.add(cube);

 var sphere = new THREE.Mesh(new THREE.SphereGeometry(3, 20, 8), material);
 scene.add(sphere);

 renderer.render(scene, camera);
 }
 </script>
</html>

总结

本文的内容到这就结束了,文章通过详细实例及图片介绍了Three.js中的Lamber与Phong,希望对大家的学习有所帮助,小编会陆续整理Three.js的相关文章,对Three.js感兴趣的朋友们请继续支持我们。

(0)

相关推荐

  • Three.js源码阅读笔记(物体是如何组织的)

    这是Three.js源码阅读笔记第三篇.之前两篇主要是关于核心对象的,这些核心对象主要围绕着矢量vector3对象和矩阵matrix4对象展开的,关注的是空间中的单个顶点的位置和变化.这一篇将主要讨论Three.js中的物体是如何组织的:即如何将顶点.表面.材质组合成为一个具体的对象. Object::Mesh 该构造函数构造了一个空间中的物体.之所以叫"网格"是因为,实际上具有体积的物体基本都是建模成为"网格"的. 复制代码 代码如下: THREE.Mesh =

  • THREE.JS入门教程(6)创建自己的全景图实现步骤

    译序 Three.js是一个伟大的开源WebGL库,WebGL允许JavaScript操作GPU,在浏览器端实现真正意义的3D.但是目前这项技术还处在发展阶段,资料极为匮乏,爱好者学习基本要通过Demo源码和Three.js本身的源码来学习. 0.简介 全景图非常酷.使用Three.js做一个属于自己的全景图并不是那么困难. 要做一个全景图,你需要一个软件用来做一张全景图片(译者注:如果你没有那些特殊的设备).我使用了iPhone上的Microsoft Photosynth软件来制作. 1.环境

  • Three.js学习之正交投影照相机

    前言 Three.js是一个3Djs库,webGL开源框架中比较优秀的一个.除了webGL以外,Three.js还提供了基于Canvas.SVG标签的渲染器,调试建议使用Chrome或者Firefox. 1.照相机 图形学中的照相机定义了三维空间到二维屏幕的投影方式. 针对投影方式照相机分为正交投影照相机和透视投影照相机. 2.两种相机的区别与适用范围 正交投影: 透视投影: 正交投影就像数学课上画的:而透视投影有一个基本点,就是远处的物体比近处的物体小,远大近小. 对于制图.建模软件通常使用正

  • THREE.JS入门教程(4)创建粒子系统

    译序 Three.js是一个伟大的开源WebGL库,WebGL允许JavaScript操作GPU,在浏览器端实现真正意义的3D.但是目前这项技术还处在发展阶段,资料极为匮乏,爱好者学习基本要通过Demo源码和Three.js本身的源码来学习. 0.简介 嗨,又见面了.这么说我们已经开始学习Three.js了,如果你还没有看过之前三篇教程,建议你先读完.如果你已经读完前面的教程了,你可能会想做一些关于粒子的东西.让我们直面这个话题吧,每个人都爱粒子效果.不管你是否知道,你可以很轻易地创建它们. 1

  • Three.js源码阅读笔记(Object3D类)

    这是Three.js源码阅读笔记的第二篇,直接开始. Core::Object3D Object3D似乎是Three.js框架中最重要的类,相当一部分其他的类都是继承自Object3D类,比如场景类.几何形体类.相机类.光照类等等:他们都是3D空间中的对象,所以称为Object3D类.Object3D构造函数如下: 复制代码 代码如下: THREE.Object3D = function () { THREE.Object3DLibrary.push( this ); this.id = THR

  • THREE.JS入门教程(1)THREE.JS使用前了解

    Three.js是一个伟大的开源WebGL库,WebGL允许JavaScript操作GPU,在浏览器端实现真正意义的3D.但是目前这项技术还处在发展阶段,资料极为匮乏,爱好者学习基本要通过Demo源码和Three.js本身的源码来学习. 国外网站 aerotwist.com 有六篇较为简单的入门教程,我尝试着将其翻译过来,与大家分享. 我在一些实验项目中使用了Three.js,我发现它对快速上手浏览器3D编程确实很有帮助.通过Three.js,你不仅可以创建相机.物体.光线.材质等等,还可以选择

  • Three.js源码阅读笔记(光照部分)

    天气越来越冷了,人也越来越懒怠,越来越像呆在温暖的寝室里看小说或者打游戏,也好久没看Three.js源码了.今天天气不错,接着看! 这次从光照部分看起:光照模型,从光线本身角度来看包括环境光.平行光.点光源,从物体表面材质角度看又包括漫反射和镜面反射. Lights:Light 复制代码 代码如下: THREE.Light = function ( hex ) { THREE.Object3D.call( this ); this.color = new THREE.Color( hex );

  • Three.js学习之几何形状

    1.立方体 虽然这一形状的名字叫立方体(CubeGeometry),但它其实是长方体,也就是长宽高可以设置为不同的值.其构造函数是: THREE.CubeGeometry(width,height,depth,widthSegments,heightSegments, depthSegments) width:x方向上的长度 height:y方向上的长度 depth:z方向上的长度 widthSegments:x方向上的分段数(可选,缺省值1) heightSegments:y方向上的分段数(同

  • Three.js学习之文字形状及自定义形状

    1.文字形状 说起3d文字想起了早年word里的一些艺术字: 那么TextGeometry可以用来创建三维的文字形状. 使用文字形状需要下载和引用额外的字体库.这里,我们以 helvetiker字体为例. 引用: <script type="text/javascript" src="你的路径/helvetiker_regular.typeface.json"></script> TextGeometry的构造函数是: THREE.TextG

  • THREE.JS入门教程(2)着色器-上

    译序 Three.js是一个伟大的开源WebGL库,WebGL允许JavaScript操作GPU,在浏览器端实现真正意义的3D.但是目前这项技术还处在发展阶段,资料极为匮乏,爱好者学习基本要通过Demo源码和Three.js本身的源码来学习. 0.简介 之前我已经给出了一篇<开始使用Three.js>.如果你还没有读过,你可能需要去读一下,本文的基础是在那一篇教程的基础上完成的. 我想讨论一下着色器.在Three.js帮助你免去了很多麻烦之前,原生WebGL就很优秀了.有的时候,你也许会想要完

随机推荐