Python中的浮点数原理与运算分析

本文实例讲述了Python中的浮点数原理与运算。分享给大家供大家参考,具体如下:

先看一个违反直觉的例子:

>>> s = 0.
>>> for i in range(10): s += .1
>>> s
0.9999999999999999
# 错误被累加

再看一个更为普遍,直接影响判断逻辑的例子:

>>> from math import sqrt
>>> a = sqrt(2)
>>> a*a == a
False

之所以会出现以上的结果,在于 Python (更准确地说是计算机硬件体系结构)对浮点数的表示,我们来看计算机(基于二进制)对十进制小数 0.1 的表示,十进制小数向二进制小数转换的方法请见 Python十进制小数与二进制小数相互转换。将十进制小数 0.1 转换为二进制时的结果为 0.0001100110011001....,无限循环,计算机无法展示无限的结果,只能对结果进行截断,这是浮点数精度问题的根源。

“==” on floats

基于以上的考虑,当我们进行浮点数的相等比较时,要特别小心,直接使用 == 是有问题的,一种通用的做法即是,不是检测浮点数是否相等,而是检测二者是否足够接近,

>>> a = sqrt(2)
>>> abs(a*a-2) < epsilon
# 判断是否小于某一小量

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • Python两个整数相除得到浮点数值的方法

    在python中进行两个整数相除的时候,在默认情况下都是只能够得到整数的值,而在需要进行对除所得的结果进行精确地求值时,想在运算后即得到浮点值,那么如何进行处理呢? 1.修改被除数的值为带小数点的形式即可得到浮点值,这种方法在被除数事先知道的情况下才可以采用有效,而这种情况意味着被除数的值是写死的.固定的,在绝大多数的情况下是不可行的: 2.在进行除法运算前导入一个实除法的模块,即可在两个整数进行相除的时候得到浮点的结果; 复制代码 代码如下: from __future__ import di

  • python中精确输出JSON浮点数的方法

    有时需要在JSON中使用浮点数,比如价格.坐标等信息.但python中的浮点数相当不准确, 例如下面的代码: 复制代码 代码如下: #!/usr/bin/env python import json as json data = [ 0.333, 0.999, 0.1 ]print json.dumps(data) 输出结果如下: 复制代码 代码如下: $ python floatjson.py[0.33300000000000002, 0.999, 0.10000000000000001] 能

  • Python双精度浮点数运算并分行显示操作示例

    本文实例讲述了Python双精度浮点数运算并分行显示操作.分享给大家供大家参考,具体如下: #coding=utf8 def doubleType(): ''''' Python中的浮点数是双精度浮点数,可以用十进制或科学计数法表示. 实际精度依赖于机器架构和创建Python解释器的编译器. 浮点数值通常都有一个小数点和一个可选的后缀e(大写或小写,表示科学计数法). 在e和指数之间可以用正(+)或负(-)表示指数的正负(正数可以省略符号) ''' (one,two,three,four,fiv

  • python中实现精确的浮点数运算详解

    为什么说浮点数缺乏精确性? 在开始本文之前,让我们先来谈谈浮点数为什么缺乏精确性的问题,其实这不是Python的问题,而是实数的无限精度跟计算机的有限内存之间的矛盾. 举个例子,假如说我只能使用整数(即只精确到个位,计算机内的浮点数也只有有限精度,以C语言中的双精度浮点数double为例,精度为52个二进制位),要表示任意实数(无限精度)的时候我就只能通过舍入(rounding)来近似表示. 比如1.2我会表示成1,2.4表示成2,3.6表示成4. 所以呢? 在算1.2 - 1.2的时候,由于计

  • python使用正则搜索字符串或文件中的浮点数代码实例

    用python和numpy处理数据次数比较多,写了几个小函数,可以方便地读写数据: # -*- coding: utf-8 -*- #---------------------------------------------------------------------- # FileName:gettxtdata.py #功能:读取字符串和文件中的数值数据(浮点数) #主要提供类似matlab中的dlmread和dlmwrite函数 #同时提供loadtxtdata和savetxtdata函

  • 关于Python中浮点数精度处理的技巧总结

    前言 最近在使用Python的时候遇到浮点数运算,发现经常会碰到如下情况: 出现上面的情况,主要还是因浮点数在计算机中实际是以二进制保存的,有些数不精确. 比如说: 0.1是十进制,转化为二进制后它是个无限循环的数: 0.00011001100110011001100110011001100110011001100110011001100 而python是以双精度(64)位来保存浮点数,多余的位会被截掉,所以看到的是0.1,但在电脑上实际保存的已不是精确的0.1,参与运算后,也就有可能点误差,特

  • python读取浮点数和读取文本文件示例

    从文本文件中读入浮点数据,是最常见的任务之一,python没有scanf这样的输入函数,但我们可以利用正规表达式从读入的字符串中提取出浮点数 复制代码 代码如下: import refp = open('c:/1.txt', 'r')s = fp.readline()print(s)aList = re.findall('([-+]?\d+(\.\d*)?|\.\d+)([eE][-+]?\d+)?',s) #使用正规表达式搜索字符串print(aList)for ss in aList:   

  • Python字符串转换成浮点数函数分享

    利用map和reduce编写一个str2float函数,把字符串'123.456'转换成浮点数123.456 from functools import reduce def str2float(s): return reduce(lambda x,y:x+int2dec(y),map(str2int,s.split('.'))) def char2num(s): return {'0':0,'1':1,'2':2,'3':3,'4':4,'5':5,'6':6,'7':7,'8':8,'9':

  • Python中的浮点数原理与运算分析

    本文实例讲述了Python中的浮点数原理与运算.分享给大家供大家参考,具体如下: 先看一个违反直觉的例子: >>> s = 0. >>> for i in range(10): s += .1 >>> s 0.9999999999999999 # 错误被累加 再看一个更为普遍,直接影响判断逻辑的例子: >>> from math import sqrt >>> a = sqrt(2) >>> a*a

  • python中栈的原理及实现方法示例

    本文实例讲述了python中栈的原理及实现方法.分享给大家供大家参考,具体如下: 栈(stack),有些地方称为堆栈,是一种容器,可存入数据元素.访问元素.删除元素,它的特点在于只能允许在容器的一端(称为栈顶端指标,英语:top)进行加入数据(英语:push)和输出数据(英语:pop)的运算.没有了位置概念,保证任何时候可以访问.删除的元素都是此前最后存入的那个元素,确定了一种默认的访问顺序. 由于栈数据结构只允许在一端进行操作,因而按照后进先出(LIFO, Last In First Out)

  • 详解Python中递归函数的原理与使用

    目录 什么是递归函数 递归函数的条件 定义一个简单的递归函数 代码解析 内存栈区堆区 死递归 尾递归 实例 什么是递归函数 如果一个函数,可以自己调用自己,那么这个函数就是一个递归函数. 递归,递就是去,归就是回,递归就是一去一回的过程. 递归函数的条件 一般来说,递归需要边界条件,整个递归的结构中要有递归前进段和递归返回段.当边界条件不满足,递归前进,反之递归返回.就是说递归函数一定需要有边界条件来控制递归函数的前进和返回. 定义一个简单的递归函数 # 定义一个函数 def recursion

  • Python中顺序表原理与实现方法详解

    本文实例讲述了Python中顺序表原理与实现方法.分享给大家供大家参考,具体如下: Python中的顺序表 Python中的list和tuple两种类型采用了顺序表的实现技术,具有顺序表的所有性质. tuple是不可变类型,即不变的顺序表,因此不支持改变其内部状态的任何操作,而其他方面,则与list的性质类似. list的基本实现技术 Python标准类型list就是一种元素个数可变的线性表,可以加入和删除元素,并在各种操作中维持已有元素的顺序(即保序),而且还具有以下行为特征: 基于下标(位置

  • 关于Python中定制类的比较运算实例

    Python中的比较运算有几种:小于.小于等于.等于.大于等于.大于.不等于等.如果我们的数据对象具有明确的物理含义,比如说数值是带有数字与物理单位的字符串组合,那么进行大小比较的时候就可以做此定制. 下面针对6种比较方法中的一种来进行定制示范,选择小于判断来做尝试. 写如下示范代码: class myClass: def __init__(self,value): self.value = value def __lt__(self,other): return int(self.value[

  • python中GIL的原理及用法总结

    1.说明 GIL规定一个Python解释程序只能同时由一个线程控制. 在CPU限制类型和多线程代码中,GIL是一个性能瓶颈. GIL使Python多线程成为伪并行多线程. 仅CPython解释器上存在GIL. 2.原理 (1)线程1.2.3轮流执行,每一个线程在执行是,都会锁住GIL,以阻止别的线程执行: 同样的,每一个线程执行一段后,会释放GIL,以允许别的线程开始利用资源. (2)由于古老GIL机制,如果线程2需要在CPU2上执行,它需要先等待在CPU1上执行的线程1释放GIL(记住:GIL

  • for循环在Python中的工作原理详细

    例如: 作用于列表 >>> for elem in [1,2,3]: ... print(elem) ... 1 2 3 作用于字符串 >>> for c in "abc": ... print(c) ... a b c 作用于字典 >>> for k in {"age":10, "name":"wang"}: ... print(k) ... age name 可能有人不

  • 一文详解Python中生成器的原理与使用

    目录 什么是生成器 迭代器和生成器的区别 创建方式 生成器表达式 基本语法 生成器函数 yield关键字 yield和return yield的使用方法 生成器函数的基本使用 send的使用 可迭代对象的优化 总结 我们学习完推导式之后发现,推导式就是在容器中使用一个for循环而已,为什么没有元组推导式? 原因就是“元组推导式”的名字不是这样的,而是叫做生成器表达式. 什么是生成器 生成器表达式本质上就是一个迭代器,是定义迭代器的一种方式,是允许自定义逻辑的迭代器.生成器使用generator表

  • 聊聊Python中的浮点数运算不准确问题

    大家好,老 Amy 来了.之前就意识到一个问题,但是最近又有朋友提出来了,所以就想着干脆记录下来,分享给大家叭~ 啥问题呢?请看题: 也就是说,需要大家计算1.1-1的值,很多朋友会说:"emmm-这还不简单,玩我呢?不就是0.1嘛" 但是如果你用 python 去执行一下,会发现结果跟你想的不太一样,如下图: 这样大家是不是发现了什么问题?是的,浮点数在运算过程中并没有保证完全精确,是什么原因导致了这种现象呢?很多朋友就会窃喜:"这不就是 Python 的 bug 嘛~&q

  • 线程安全及Python中的GIL原理分析

    本文讲述了线程安全及Python中的GIL.分享给大家供大家参考,具体如下: 摘要 什么是线程安全? 为什么python会使用GIL的机制? 在多核时代的到来的背景下,基于多线程来充分利用硬件的编程方法也不断发展起来, 但是一旦 牵扯到多线程,就必然会涉及到一个概念,即 线程安全, 本文就主要谈下笔者对线程安全的一些理解. 而Python为很多人所抱怨的一点就是GIL,那么python为什么选择使用GIL, 本文也就这个问题进行一些讨论. 引入 你的PC或者笔记本还是单核吗? 如果是,那你已经o

随机推荐