在Python3中使用asyncio库进行快速数据抓取的教程

web数据抓取是一个经常在python的讨论中出现的主题。有很多方法可以用来进行web数据抓取,然而其中好像并没有一个最好的办法。有一些如scrapy这样十分成熟的框架,更多的则是像mechanize这样的轻量级库。DIY自己的解决方案同样十分流行:你可以使用requestsbeautifulsoup或者pyquery来实现。

方法如此多样的原因在于,数据“抓取”实际上包括很多问题:你不需要使用相同的工具从成千上万的页面中抓取数据,同时使一些Web工作流自动化(例如填一些表单然后取回数据)。我喜欢DIY的原因在于其灵活性,但是却不适合用来做大量数据的抓取,因为需要请求同步,所以大量的请求意味着你不得不等待很长时间。

在本文中,我将会为你展示一个基于新的异步库(aiohttp)的请求的代替品。我使用它写了一些速度的确很快的小数据抓取器,下面我将会为你演示是如何做到的。

asyncio的基本概念
asyncio是在python3.4中被引进的异步IO库。你也可以通过python3.3的pypi来安装它。它相当的复杂,而且我不会介绍太多的细节。相反,我将会解释你需要知道些什么,以利用它来写异步的代码。

简而言之,有两件事情你需要知道:协同程序和事件循环。协同程序像是方法,但是它们可以在代码中的特定点暂停和继续。当在等待一个IO(比如一个HTTP请求),同时执行另一个请求的时候,可以用来暂停一个协同程序。我们使用关键字yield from来设定一个状态,表明我们需要一个协同程序的返回值。而事件循环则被用来安排协同程序的执行。

关于asyncio还有很多很多,但是以上是我们到目前为止需要知道的。可能你还有些不清楚,那么让我们来看一些代码吧。

aiohttp
aiohttp是一个利用asyncio的库,它的API看起来很像请求的API。到目前为止,相关文档还不健全。但是这里有一些非常有用的例子。我们将会演示它的基本用法。

首先,我们会定义一个协同程序用来获取页面,并打印出来。我们使用 asyncio.coroutine将一个方法装饰成一个协同程序。aiohttp.request是一个协同程序,所以它是一个可读方法,我们需要使用yield from来调用它们。除了这些,下面的代码看起来相当直观:

@asyncio.coroutine
def print_page(url):
  response = yield from aiohttp.request('GET', url)
  body = yield from response.read_and_close(decode=True)
  print(body)

如你所见,我们可以使用yield from从另一个协同程序中调用一个协同程序。为了从同步代码中调用一个协同程序,我们需要一个事件循环。我们可以通过asyncio.get_event_loop()得到一个标准的事件循环,之后使用它的run_until_complete()方法来运行协同程序。所以,为了使之前的协同程序运行,我们只需要做下面的步骤:

loop = asyncio.get_event_loop()
loop.run_until_complete(print_page('http://example.com'))

一个有用的方法是asyncio.wait,通过它可以获取一个协同程序的列表,同时返回一个将它们全包括在内的单独的协同程序,所以我们可以这样写:

loop.run_until_complete(asyncio.wait([print_page('http://example.com/foo'),
                   print_page('http://example.com/bar')]))

另一个是asyncio.as_completed,通过它可以获取一个协同程序的列表,同时返回一个按完成顺序生成协同程序的迭代器,因此当你用它迭代时,会尽快得到每个可用的结果。

数据抓取
现在我们知道了如何做异步HTTP请求,因此我们可以来写一个数据抓取器了。我们仅仅还需要一些工具来读取html页面,我使用了beautifulsoup来做这个事情,其余的像 pyquerylxml也可以实现。

在这个例子中,我们会写一个小数据抓取器来从海盗湾抓取一些linux distributions的torrent 链路(海盗湾(英语:The Pirate Bay,缩写:TPB)是一个专门存储、分类及搜索Bittorrent种子文件的网站,并自称“世界最大的BitTorrent tracker(BT种子服务器)”,提供的BT种子除了有自由版权的收集外,也有不少被著作人声称拥有版权的音频、视频、应用软件与电子游戏等,为网络分享与下载的重要网站之一–译者注来自维基百科)

首先,需要一个辅助协同程序来获取请求:

@asyncio.coroutine
def get(*args, **kwargs):
  response = yield from aiohttp.request('GET', *args, **kwargs)
  return (yield from response.read_and_close(decode=True))

解析部分。本文并非介绍beautifulsoup的,所以这部分我会简写:我们获取了这个页面的第一个磁链。

def first_magnet(page):
  soup = bs4.BeautifulSoup(page)
  a = soup.find('a', title='Download this torrent using magnet')
  return a['href']

在这个协同程序中,url的结果通过种子的数量进行排序,所以排名第一的结果实际上是种子最多的:

@asyncio.coroutine
def print_magnet(query):
  url = 'http://thepiratebay.se/search/{}/0/7/0'.format(query)
  page = yield from get(url, compress=True)
  magnet = first_magnet(page)
  print('{}: {}'.format(query, magnet))

最后,用下面的代码来调用以上所有的方法。

distros = ['archlinux', 'ubuntu', 'debian']
loop = asyncio.get_event_loop()
f = asyncio.wait([print_magnet(d) for d in distros])
loop.run_until_complete(f)

结论
好了,现在我们来到了这个部分。你有了一个异步工作的小抓取器。这意味着多个页面可以同时被下载,所以这个例子要比使用请求的相同代码快3倍。现在你应该可以用相同的方法写出你自己的抓取器了。

你可以在这里找到生成的代码,也包括一些额外的建议。

你一旦熟悉了这一切,我建议你看一看asyncio的文档和aiohttp的范例,这些都能告诉你 asyncio拥有怎样的潜力。

这种方法(事实上是所有手动的方法)的一个局限在于,没有一个独立的库可以用来处理表单。机械化的方法拥有很多辅助工具,这使得提交表单变得十分简单,但是如果你不使用它们,你将不得不自己去处理这些事情。这可能会导致一些bug的出现,所以同时我可能会写一个这样的库(不过目前为止无需为此担心)。

额外的建议:不要敲打服务器
同时做3个请求很酷,但是同时做5000个就不那么好玩了。如果你打算同时做太多的请求,链接有可能会断掉。你甚至有可能会被禁止链接网络。

为了避免这些,你可以使用semaphore。这是一个可以被用来限制同时工作的协同程序数量的同步工具。我们只需要在建立循环之前创建一个semaphore ,同时把我们希望允许的同时请求的数量作为参数传给它既可:

sem = asyncio.Semaphore(5)

然后,我们只需要将下面

page = yield from get(url, compress=True)

替换成被semaphore 保护的同样的东西。

with (yield from sem):
  page = yield from get(url, compress=True)

这就可以保证同时最多有5个请求会被处理。

额外建议:进度条
这个东东是免费的哦:tqdm是一个用来生成进度条的优秀的库。这个协同程序就像asyncio.wait一样工作,不过会显示一个代表完成度的进度条。

@asyncio.coroutine
def wait_with_progress(coros):
  for f in tqdm.tqdm(asyncio.as_completed(coros), total=len(coros)):
    yield from f
(0)

相关推荐

  • 探索Python3.4中新引入的asyncio模块

    使用 Simple Protocol asyncio.BaseProtocol 类是asyncio模块中协议接口(protocol interface)的一个常见的基类.asyncio.Protocolclass 继承自asyncio.BaseProtocol 并为stream protocols提供了一个接口.下面的代码演示了asyncio.Protocol 接口的一个简单实现,它的行为1就像一个echo server,同时,它还会在Python的控制台中输出一些信息.SimpleEchoPr

  • Python使用asyncio包处理并发详解

    阻塞型I/O和GIL CPython 解释器本身就不是线程安全的,因此有全局解释器锁(GIL),一次只允许使用一个线程执行 Python 字节码.因此,一个 Python 进程通常不能同时使用多个 CPU 核心. 然而,标准库中所有执行阻塞型 I/O 操作的函数,在等待操作系统返回结果时都会释放GIL.这意味着在 Python 语言这个层次上可以使用多线程,而 I/O 密集型 Python 程序能从中受益:一个 Python 线程等待网络响应时,阻塞型 I/O 函数会释放 GIL,再运行一个线程

  • Python中使用asyncio 封装文件读写

    前言 和网络 IO 一样,文件读写同样是一个费事的操作. 默认情况下,Python 使用的是系统的阻塞读写.这意味着在 asyncio 中如果调用了 f = file('xx') f.read() 会阻塞事件循环. 本篇简述如何用 asyncio.Future 对象来封装文件的异步读写. 代码在 GitHub.目前仅支持 Linux. 阻塞和非阻塞 首先需要将文件的读写改为非阻塞的形式.在非阻塞情况下,每次调用 read 都会立即返回,如果返回值为空,则意味着文件操作还未完成,反之则是读取的文件

  • 在Python3中使用asyncio库进行快速数据抓取的教程

    web数据抓取是一个经常在python的讨论中出现的主题.有很多方法可以用来进行web数据抓取,然而其中好像并没有一个最好的办法.有一些如scrapy这样十分成熟的框架,更多的则是像mechanize这样的轻量级库.DIY自己的解决方案同样十分流行:你可以使用requests.beautifulsoup或者pyquery来实现. 方法如此多样的原因在于,数据"抓取"实际上包括很多问题:你不需要使用相同的工具从成千上万的页面中抓取数据,同时使一些Web工作流自动化(例如填一些表单然后取回

  • C#中的modbus Tcp协议的数据抓取和使用解析

    目录 C# modbus Tcp协议数据抓取和使用 C# modbus tcp读写数据 C# modbus Tcp协议数据抓取和使用 基于Modbus tcp 协议的数据抓取,并解析,源码使用C#开发 using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Sockets; using System.Text; namespace modbus {

  • 用javascript解决外部数据抓取中的乱码问题

    我们一般会在两个地方用到外部数据抓取,一个是在asp中,一个是在hta中.如果外部数据是gb2312编码的,就涉及到转码的问题,但是传统的用vbs函数进行处理的方法,运算量比较大,有些特殊字符还会出错.    如果用adodb.stream控件来进行转码,就简单多了,不需要借助vbs的二进制处理函数了,同时速度快了很多. 复制代码 代码如下: <script>  function loadData(sUrl){      var xh      xh=new ActiveXObject(&qu

  • python采用requests库模拟登录和抓取数据的简单示例

    如果你还在为python的各种urllib和urlibs,cookielib 头疼,或者还还在为python模拟登录和抓取数据而抓狂,那么来看看我们推荐的requests,python采集数据模拟登录必备利器! 这也是python推荐的HTTP客户端库: 本文就以一个模拟登录的例子来加以说明,至于采集大家就请自行发挥吧. 代码很简单,主要是展现python的requests库的简单至极,代码如下: s = requests.session() data = {'user':'用户名','pass

  • 在Python中使用cookielib和urllib2配合PyQuery抓取网页信息

    刚才好无聊,突然想起来之前做一个课表的点子,于是百度了起来. 刚开始,我是这样想的:在写微信墙的时候,用到了urllib2[两行代码抓网页],那么就只剩下解析html了.于是百度:python解析html.发现一篇好文章,其中介绍到了pyQuery. pyQuery 是 jQuery 在 Python 中的实现,能够以 jQuery 的语法來操作解析 HTML 文档.使用前需要安装,Mac安装方法如下: sudo easy_install pyquery OK!安装好了! 我们来试一试吧: fr

  • 在Python中使用NLTK库实现对词干的提取的教程

    什么是词干提取? 在语言形态学和信息检索里,词干提取是去除词缀得到词根的过程─-得到单词最一般的写法.对于一个词的形态词根,词干并不需要完全相同:相关的词映射到同一个词干一般能得到满意的结果,即使该词干不是词的有效根.从1968年开始在计算机科学领域出现了词干提取的相应算法.很多搜索引擎在处理词汇时,对同义词采用相同的词干作为查询拓展,该过程叫做归并. 一个面向英语的词干提取器,例如,要识别字符串"cats"."catlike"和"catty"是

  • python中使用you-get库批量在线下载bilibili视频的教程

    此文章描述的是在windows10系统pc端python环境下,利用you-get库来进行bilibili视频批量下载,是在cmd中操作完成,只建议有python环境的用户使用. 1.安装you-get库,此处需要注意的是you-get的安装不可以用conda命令行安装,刚刚一股脑只想着annoconda的conda命令,浪费了很多时间. pip install you-get 2.安装完成以后,就可以进行视频下载啦! you-get -o 本地存储路径 bilibili视频在线网址 以上是单个

  • 在Python中利用Pandas库处理大数据的简单介绍

    在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章<别老扯什么Hadoop了,你的数据根本不够大>指出:只有在超过5TB数据量的规模下,Hadoop才是一个合理的技术选择.这次拿到近亿条日志数据,千万级数据已经是关系型数据库的查询分析瓶颈,之前使用过Hadoop对大量文本进行分类,这次决定采用Python来处理数据: 硬件环境         CPU:3.5 GHz Intel Core i7         内存:32 GB HDDR 3 1600 MHz         硬

  • python协程与 asyncio 库详情

    目录 1.asyncio 异步 I/O 库 异步函数的定义 事件循环 event_loop 创建 task 回调返回值 循环事件关闭 2.本节爬虫项目 前言: python 中协程概念是从 3.4 版本增加的,但 3.4 版本采用是生成器实现,为了将协程和生成器的使用场景进行区分,使语义更加明确,在 python 3.5 中增加了 async 和 await 关键字,用于定义原生协程. 1.asyncio 异步 I/O 库 python 中的 asyncio 库提供了管理事件.协程.任务和线程的

  • python3.X 抓取火车票信息【修正版】

    代码是在源代码的基础上进行的修改.希望对你有所帮助! 实现后如图所示: 首先我们需要抓取一些基础的数据,各大火车站信息! import urllib from urllib import request import re url = 'https://kyfw.12306.cn/otn/resources/js/framework/station_name.js?station_version=1.8955' req = urllib.request.Request(url) r = urll

随机推荐