Python中使用支持向量机SVM实践

在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别、分类(异常值检测)以及回归分析。

其具有以下特征:

(1)SVM可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值。而其他分类方法都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解。

(2) SVM通过最大化决策边界的边缘来实现控制模型的能力。尽管如此,用户必须提供其他参数,如使用核函数类型和引入松弛变量等。

(3)SVM一般只能用在二类问题,对于多类问题效果不好。

代码及详细解释(基于sklearn包):

from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt

#准备训练样本
x=[[1,8],[3,20],[1,15],[3,35],[5,35],[4,40],[7,80],[6,49]]
y=[1,1,-1,-1,1,-1,-1,1]

##开始训练
clf=svm.SVC() ##默认参数:kernel='rbf'
clf.fit(x,y)
##根据训练出的模型绘制样本点
for i in x:
  res=clf.predict(np.array(i).reshape(1, -1))
  if res > 0:
    plt.scatter(i[0],i[1],c='r',marker='*')
  else :
    plt.scatter(i[0],i[1],c='g',marker='*')

##生成随机实验数据(15行2列)
rdm_arr=np.random.randint(1, 15, size=(15,2))
##回执实验数据点
for i in rdm_arr:
  res=clf.predict(np.array(i).reshape(1, -1))
  if res > 0:
    plt.scatter(i[0],i[1],c='r',marker='.')
  else :
    plt.scatter(i[0],i[1],c='g',marker='.')
##显示绘图结果
plt.show()

从图上可以看出,数据明显被蓝色分割线分成了两类。但是红色箭头标示的点例外,所以这也起到了检测异常值的作用。
上面的代码中提到了kernel='rbf',这个参数是SVM的核心:核函数

重新整理后的代码如下:

from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt

##设置子图数量
fig, axes = plt.subplots(nrows=2, ncols=2,figsize=(7,7))
ax0, ax1, ax2, ax3 = axes.flatten()

#准备训练样本
x=[[1,8],[3,20],[1,15],[3,35],[5,35],[4,40],[7,80],[6,49]]
y=[1,1,-1,-1,1,-1,-1,1]
'''
  说明1:
    核函数(这里简单介绍了sklearn中svm的四个核函数,还有precomputed及自定义的)

  LinearSVC:主要用于线性可分的情形。参数少,速度快,对于一般数据,分类效果已经很理想
  RBF:主要用于线性不可分的情形。参数多,分类结果非常依赖于参数
  polynomial:多项式函数,degree 表示多项式的程度-----支持非线性分类
  Sigmoid:在生物学中常见的S型的函数,也称为S型生长曲线

  说明2:根据设置的参数不同,得出的分类结果及显示结果也会不同

'''
##设置子图的标题
titles = ['LinearSVC (linear kernel)',
     'SVC with polynomial (degree 3) kernel',
     'SVC with RBF kernel',   ##这个是默认的
     'SVC with Sigmoid kernel']
##生成随机试验数据(15行2列)
rdm_arr=np.random.randint(1, 15, size=(15,2))

def drawPoint(ax,clf,tn):
  ##绘制样本点
  for i in x:
    ax.set_title(titles[tn])
    res=clf.predict(np.array(i).reshape(1, -1))
    if res > 0:
      ax.scatter(i[0],i[1],c='r',marker='*')
    else :
      ax.scatter(i[0],i[1],c='g',marker='*')
   ##绘制实验点
  for i in rdm_arr:
    res=clf.predict(np.array(i).reshape(1, -1))
    if res > 0:
      ax.scatter(i[0],i[1],c='r',marker='.')
    else :
      ax.scatter(i[0],i[1],c='g',marker='.')

if __name__=="__main__":
  ##选择核函数
  for n in range(0,4):
    if n==0:
      clf = svm.SVC(kernel='linear').fit(x, y)
      drawPoint(ax0,clf,0)
    elif n==1:
      clf = svm.SVC(kernel='poly', degree=3).fit(x, y)
      drawPoint(ax1,clf,1)
    elif n==2:
      clf= svm.SVC(kernel='rbf').fit(x, y)
      drawPoint(ax2,clf,2)
    else :
      clf= svm.SVC(kernel='sigmoid').fit(x, y)
      drawPoint(ax3,clf,3)
  plt.show()

由于样本数据的关系,四个核函数得出的结果一致。在实际操作中,应该选择效果最好的核函数分析。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python中支持向量机SVM的使用方法详解

    除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类.因为Python中的sklearn库也集成了SVM算法,本文的运行环境是Pycharm. 一.导入sklearn算法包 Scikit-Learn库已经实现了所有基本机器学习的算法,具体使用详见官方文档说明 skleran中集成了许多算法,其导入包的方式如下所示, 逻辑回归:from sklearn.linear_model import LogisticRegression 朴素贝叶斯:fro

  • SVM基本概念及Python实现代码

    SVM(support vector machine)支持向量机: 注意:本文不准备提到数学证明的过程,一是因为有一篇非常好的文章解释的非常好:支持向量机通俗导论(理解SVM的三层境界),另一方面是因为我只是个程序员,不是搞数学的(主要是因为数学不好.),主要目的是将SVM以最通俗易懂,简单粗暴的方式解释清楚. 线性分类: 先从线性可分的数据讲起,如果需要分类的数据都是线性可分的,那么只需要一根直线f(x)=wx+b就可以分开了,类似这样: 这种方法被称为:线性分类器,一个线性分类器的学习目标便

  • Python中使用支持向量机(SVM)算法

    在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别.分类(异常值检测)以及回归分析. 其具有以下特征: (1)SVM可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值.而其他分类方法都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解.   (2) SVM通过最大化决策边界的边缘来实现控制模型的能力.尽管如此,用户必须提供其他参数,如使用核函数类型和引入松弛变量等.   (3)S

  • Python机器学习之SVM支持向量机

    SVM支持向量机是建立于统计学习理论上的一种分类算法,适合与处理具备高维特征的数据集. SVM算法的数学原理相对比较复杂,好在由于SVM算法的研究与应用如此火爆,CSDN博客里也有大量的好文章对此进行分析,下面给出几个本人认为讲解的相当不错的: 支持向量机通俗导论(理解SVM的3层境界) JULY大牛讲的是如此详细,由浅入深层层推进,以至于关于SVM的原理,我一个字都不想写了..强烈推荐. 还有一个比较通俗的简单版本的:手把手教你实现SVM算法 SVN原理比较复杂,但是思想很简单,一句话概括,就

  • 手把手教你python实现SVM算法

    什么是机器学习 (Machine Learning) 机器学习是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能.它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域. 机器学习的大致分类: 1)分类(模式识别):要求系统依据已知的分类知识对输入的未知模式(该模式的描述)作分析,以确定输入模式的类属,例如手写识别(识别是不是这个数). 2)问题求解:要求对于给定的目标状态,寻找一个将当前状态转换为目标状态的动作序

  • Python中使用支持向量机SVM实践

    在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别.分类(异常值检测)以及回归分析. 其具有以下特征: (1)SVM可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值.而其他分类方法都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解. (2) SVM通过最大化决策边界的边缘来实现控制模型的能力.尽管如此,用户必须提供其他参数,如使用核函数类型和引入松弛变量等. (3)SVM一般

  • Python中的支持向量机SVM的使用(附实例代码)

    除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类.因为Python中的sklearn库也集成了SVM算法,本文的运行环境是Pycharm. 一.导入sklearn算法包 Scikit-Learn库已经实现了所有基本机器学习的算法,具体使用详见官方文档说明:http://scikit-learn.org/stable/auto_examples/index.html. skleran中集成了许多算法,其导入包的方式如下所示, 逻辑回归:from

  • python中opencv支持向量机的实现

    目录 支持向量机 理论基础 SVM使用介绍 例子介绍 完整程序 支持向量机 支持向量机(Support Vector Machine, SVM)是一种二分类模型,目标是寻找一个标准(称为超平面)对样本数据进行分割,分割的原则是确保分类最优化(类别之间的间隔最大). 当数据集较小时,使用支持向量机进行分类非常有效. 支持向量机是最好的现成分类器之一,“现成”是指分类器不加修改即可直接使用. 在对原始数据分类的过程中,可能无法使用线性方法实现分割.支持向量机在分类时,把无法线性分割的数据映射到高维空

  • 详解python 支持向量机(SVM)算法

    相比于逻辑回归,在很多情况下,SVM算法能够对数据计算从而产生更好的精度.而传统的SVM只能适用于二分类操作,不过却可以通过核技巧(核函数),使得SVM可以应用于多分类的任务中. 本篇文章只是介绍SVM的原理以及核技巧究竟是怎么一回事,最后会介绍sklearn svm各个参数作用和一个demo实战的内容,尽量通俗易懂.至于公式推导方面,网上关于这方面的文章太多了,这里就不多进行展开了~ 1.SVM简介 支持向量机,能在N维平面中,找到最明显得对数据进行分类的一个超平面!看下面这幅图: 如上图中,

  • python中opencv实现文字分割的实践

    图片文字分割的时候,常用的方法有两种.一种是投影法,适用于排版工整,字间距行间距比较宽裕的图像:还有一种是用OpenCV的轮廓检测,适用于文字不规则排列的图像. 投影法 对文字图片作横向和纵向投影,即通过统计出每一行像素个数,和每一列像素个数,来分割文字. 分别在水平和垂直方向对预处理(二值化)的图像某一种像素进行统计,对于二值化图像非黑即白,我们通过对其中的白点或者黑点进行统计,根据统计结果就可以判断出每一行的上下边界以及每一列的左右边界,从而实现分割的目的. 算法步骤: 使用水平投影和垂直投

  • python中sklearn的pipeline模块实例详解

    最近在看<深度学习:基于Keras的Python实践(魏贞原)>这本书,书中8.3创建了一个Scikit-Learn的Pipeline,首先标准化数据集,然后创建和评估基线神经网络模型,代码如下: # 数据正态化,改进算法 steps = [] steps.append(('standardize', StandardScaler())) steps.append(('mlp', model)) pipeline = Pipeline(steps) kfold = KFold(n_splits

  • Python中ROC曲线绘制

    首先以支持向量机模型为例 先导入需要使用的包,我们将使用roc_curve这个函数绘制ROC曲线! from sklearn.svm import SVC from sklearn.metrics import roc_curve from sklearn.datasets import make_blobs from sklearn. model_selection import train_test_split import matplotlib.pyplot as plt %matplot

  • 分享15 个python中的 Scikit-Learn 技能

    目录 1.数据集 2.数据拆分 3.线性回归 4.逻辑回归 5.决策树 6.Bagging 7.Boosting 8.随机森林 9.XGBoost 10.支持向量机(SVM) 11.混淆矩阵 12.K-均值聚类 13.DBSCAN聚类 14.标准化和规范化 标准化 正常化 15.特征提取 前言: Scikit-Learn 是一个非常棒的 python 库,用于实现机器学习模型和统计建模.通过它,我们不仅可以实现各种回归.分类.聚类的机器学习模型,它还提供了降维.特征选择.特征提取.集成技术和内置

随机推荐